The original post is here
In this tutorial, we will interact with a queue and put it to a Redis server
using the github.com/hibiken/asynq package and create a scheduler for a
scheduled task using the github.com/robfig/cron package. This step-by-step
guide explains how to set up a queue, schedule tasks, and handle graceful
shutdowns.
Initialize the Module
Start by creating a new Go module for the project:
go mod init learn_queue_and_cron
Create cron.go
The cron.go file is responsible for scheduling and running tasks at specific
intervals. Below is the implementation:
package main import ( "fmt" "log" "time" "github.com/robfig/cron/v3" ) func runCron(c *cron.Cron) { // Schedule a task to run every minute _, err := c.AddFunc("@every 1m", func() { fmt.Printf("Task executed every minute at: %v \n", time.Now().Local()) }) if err != nil { log.Fatal(err) } // Start the cron scheduler c.Start() log.Println("Cron scheduler started") // Keep the main goroutine running select {} }
This code schedules a task to run every minute and keeps the application running
to ensure the scheduler works continuously.
Create queue.go
The queue.go file manages task processing using Asynq. Here's the code:
package main import ( "context" "encoding/json" "fmt" "log" "github.com/hibiken/asynq" ) func runQueue(server *asynq.Server) { mux := asynq.NewServeMux() mux.HandleFunc("send_email", emailHandler) mux.HandleFunc("generate_report", reportHandler) if err := server.Run(mux); err != nil { log.Fatalf("Failed to run Asynq server: %v", err) } } func emailHandler(ctx context.Context, task *asynq.Task) error { var payload struct { To string `json:"to"` } if err := json.Unmarshal(task.Payload(), &payload); err != nil { return fmt.Errorf("failed to unmarshal payload: %w", err) } fmt.Printf("Sending email to: %s\n", payload.To) return nil } func reportHandler(ctx context.Context, task *asynq.Task) error { var payload struct { ReportID int `json:"report_id"` } if err := json.Unmarshal(task.Payload(), &payload); err != nil { return fmt.Errorf("failed to unmarshal payload: %w", err) } fmt.Printf("Generating report for ID: %d\n", payload.ReportID) return nil }
Explanation
- Handlers: emailHandler and reportHandler process tasks by parsing their payloads and executing the respective actions.
- Task Queue: Tasks such as "send_email" and "generate_report" are defined and processed via Asynq's task queue.
Create router.go
The router.go file sets up HTTP endpoints to enqueue tasks:
package main import ( "encoding/json" "net/http" "github.com/gin-gonic/gin" "github.com/hibiken/asynq" ) func setupRouter(client *asynq.Client) *gin.Engine { r := gin.Default() r.POST("/enqueue/email", func(c *gin.Context) { var payload struct { To string `json:"to"` } if err := c.ShouldBindJSON(&payload); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": "Invalid request body"}) return } jsonPayload, err := json.Marshal(payload) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": "Failed to marshal payload"}) return } task := asynq.NewTask("send_email", jsonPayload) _, err = client.Enqueue(task) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": "Failed to enqueue task"}) return } c.JSON(http.StatusOK, gin.H{"message": "Email job enqueued"}) }) r.POST("/enqueue/report", func(c *gin.Context) { var payload struct { ReportID int `json:"report_id"` } if err := c.ShouldBindJSON(&payload); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": "Invalid request body"}) return } jsonPayload, err := json.Marshal(payload) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": "Failed to marshal payload"}) return } task := asynq.NewTask("generate_report", jsonPayload) _, err = client.Enqueue(task) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": "Failed to enqueue task"}) return } c.JSON(http.StatusOK, gin.H{"message": "Report job enqueued"}) }) return r }
This code uses the Gin framework to expose two endpoints for enqueuing tasks.
Create main.go
The main.go file integrates everything together:
package main import ( "context" "log" "net/http" "os" "os/signal" "syscall" "time" "github.com/hibiken/asynq" "github.com/robfig/cron/v3" ) func main() { c := cron.New() server := asynq.NewServer( asynq.RedisClientOpt{Addr: "localhost:6379"}, asynq.Config{ Concurrency: 10, }, ) client := asynq.NewClient(asynq.RedisClientOpt{Addr: "localhost:6379"}) defer client.Close() router := setupRouter(client) httpServer := &http.Server{ Addr: ":8080", Handler: router, } // Prepare shutdown context ctx, stop := context.WithCancel(context.Background()) defer stop() quit := make(chan os.Signal, 1) signal.Notify(quit, os.Interrupt, syscall.SIGTERM) go runQueue(server) go runCron(c) go func() { if err := httpServer.ListenAndServe(); err != nil && err != http.ErrServerClosed { log.Fatalf("Failed to run HTTP server: %v", err) } }() appShutdown(ctx, httpServer, c, server, quit) } func appShutdown(ctx context.Context, httpServer *http.Server, c *cron.Cron, server *asynq.Server, quit chan os.Signal) { // Wait for termination signal <-quit log.Println("Shutting down gracefully...") httpCtx, httpCancel := context.WithTimeout(ctx, 5*time.Second) defer httpCancel() if err := httpServer.Shutdown(httpCtx); err != nil { log.Printf("HTTP server shutdown error: %v", err) } server.Shutdown() c.Stop() log.Println("Application stopped") }
This file combines the queue, cron, HTTP server, and shutdown logic.
Install Dependencies
Install all required dependencies:
go mod tidy
Build and Run the Application
Build and run the application using:
go build -o run *.go && ./run
Test the Application
Visit the following endpoints to enqueue tasks:
- http://localhost:8080/enqueue/email
- http://localhost:8080/enqueue/report
Watch the terminal for the task execution logs.
Canonical URL
For more detailed information, visit the original post on my blog.
The above is the detailed content of Redis Queue and Cron in Go. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Golang is mainly used for back-end development, but it can also play an indirect role in the front-end field. Its design goals focus on high-performance, concurrent processing and system-level programming, and are suitable for building back-end applications such as API servers, microservices, distributed systems, database operations and CLI tools. Although Golang is not the mainstream language for web front-end, it can be compiled into JavaScript through GopherJS, run on WebAssembly through TinyGo, or generate HTML pages with a template engine to participate in front-end development. However, modern front-end development still needs to rely on JavaScript/TypeScript and its ecosystem. Therefore, Golang is more suitable for the technology stack selection with high-performance backend as the core.

To build a GraphQLAPI in Go, it is recommended to use the gqlgen library to improve development efficiency. 1. First select the appropriate library, such as gqlgen, which supports automatic code generation based on schema; 2. Then define GraphQLschema, describe the API structure and query portal, such as defining Post types and query methods; 3. Then initialize the project and generate basic code to implement business logic in resolver; 4. Finally, connect GraphQLhandler to HTTPserver and test the API through the built-in Playground. Notes include field naming specifications, error handling, performance optimization and security settings to ensure project maintenance

The key to installing Go is to select the correct version, configure environment variables, and verify the installation. 1. Go to the official website to download the installation package of the corresponding system. Windows uses .msi files, macOS uses .pkg files, Linux uses .tar.gz files and unzip them to /usr/local directory; 2. Configure environment variables, edit ~/.bashrc or ~/.zshrc in Linux/macOS to add PATH and GOPATH, and Windows set PATH to Go in the system properties; 3. Use the government command to verify the installation, and run the test program hello.go to confirm that the compilation and execution are normal. PATH settings and loops throughout the process

sync.WaitGroup is used to wait for a group of goroutines to complete the task. Its core is to work together through three methods: Add, Done, and Wait. 1.Add(n) Set the number of goroutines to wait; 2.Done() is called at the end of each goroutine, and the count is reduced by one; 3.Wait() blocks the main coroutine until all tasks are completed. When using it, please note: Add should be called outside the goroutine, avoid duplicate Wait, and be sure to ensure that Don is called. It is recommended to use it with defer. It is common in concurrent crawling of web pages, batch data processing and other scenarios, and can effectively control the concurrency process.

Using Go's embed package can easily embed static resources into binary, suitable for web services to package HTML, CSS, pictures and other files. 1. Declare the embedded resource to add //go:embed comment before the variable, such as embedding a single file hello.txt; 2. It can be embedded in the entire directory such as static/*, and realize multi-file packaging through embed.FS; 3. It is recommended to switch the disk loading mode through buildtag or environment variables to improve efficiency; 4. Pay attention to path accuracy, file size limitations and read-only characteristics of embedded resources. Rational use of embed can simplify deployment and optimize project structure.

The core of audio and video processing lies in understanding the basic process and optimization methods. 1. The basic process includes acquisition, encoding, transmission, decoding and playback, and each link has technical difficulties; 2. Common problems such as audio and video aberration, lag delay, sound noise, blurred picture, etc. can be solved through synchronous adjustment, coding optimization, noise reduction module, parameter adjustment, etc.; 3. It is recommended to use FFmpeg, OpenCV, WebRTC, GStreamer and other tools to achieve functions; 4. In terms of performance management, we should pay attention to hardware acceleration, reasonable setting of resolution frame rates, control concurrency and memory leakage problems. Mastering these key points will help improve development efficiency and user experience.

It is not difficult to build a web server written in Go. The core lies in using the net/http package to implement basic services. 1. Use net/http to start the simplest server: register processing functions and listen to ports through a few lines of code; 2. Routing management: Use ServeMux to organize multiple interface paths for easy structured management; 3. Common practices: group routing by functional modules, and use third-party libraries to support complex matching; 4. Static file service: provide HTML, CSS and JS files through http.FileServer; 5. Performance and security: enable HTTPS, limit the size of the request body, and set timeout to improve security and performance. After mastering these key points, it will be easier to expand functionality.

The purpose of select plus default is to allow select to perform default behavior when no other branches are ready to avoid program blocking. 1. When receiving data from the channel without blocking, if the channel is empty, it will directly enter the default branch; 2. In combination with time. After or ticker, try to send data regularly. If the channel is full, it will not block and skip; 3. Prevent deadlocks, avoid program stuck when uncertain whether the channel is closed; when using it, please note that the default branch will be executed immediately and cannot be abused, and default and case are mutually exclusive and will not be executed at the same time.
