亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

目錄
Understanding the Basics of Multiprocessing
Sharing Data Between Processes
Using Pools for Parallel Processing
Performance Considerations and Gotchas
首頁 後端開發(fā) Python教學(xué) 探索與Python多處理的並發(fā)

探索與Python多處理的並發(fā)

Jul 21, 2025 am 02:34 AM

Python的multiprocessing模塊通過繞過GIL限制實現(xiàn)並行處理,適合CPU密集型任務(wù)。其核心是Process類,可啟動獨立進程,如示例中的show_pid函數(shù)被兩個進程分別執(zhí)行。數(shù)據(jù)共享主要通過Queue或Pipe及Value/Array實現(xiàn),如使用隊列傳遞數(shù)據(jù)確保進程安全。對於批量任務(wù),Pool提供了高效的解決方案,支持map()和apply_async()方法分配任務(wù)。但需注意性能權(quán)衡:進程啟動開銷、大數(shù)據(jù)傳輸延遲、共享狀態(tài)復(fù)雜性及平臺差異可能影響效率。

Exploring Concurrency with Python Multiprocessing

Python's multiprocessing module is a solid way to handle CPU-bound tasks that can benefit from running in parallel. Unlike threading, which is limited by the GIL (Global Interpreter Lock), multiprocessing spawns separate processes, each with its own Python interpreter and memory space. That makes it ideal for tasks like heavy computations, image processing, or any job that can be split into independent chunks.

Exploring Concurrency with Python Multiprocessing

Understanding the Basics of Multiprocessing

At the core of the multiprocessing module is the Process class. It works similarly to threading's Thread , but instead of running threads within the same process, it launches new processes. Each process runs independently, so you're not blocked by Python's GIL.

Here's a basic example:

Exploring Concurrency with Python Multiprocessing
 from multiprocessing import Process
import os

def show_pid():
    print(f'Hello from process {os.getpid()}')

if __name__ == '__main__':
    p1 = Process(target=show_pid)
    p2 = Process(target=show_pid)
    p1.start()
    p2.start()
    p1.join()
    p2.join()

Each call to start() launches a new process. The join() method ensures the main script waits until both processes finish. This is how you typically start using multiprocessing — by defining target functions and launching them in separate processes.

Sharing Data Between Processes

Because each process has its own memory space, sharing data between them isn't as straightforward as with threads. If you try to use global variables or regular Python objects, changes won't be reflected across processes.

Exploring Concurrency with Python Multiprocessing

There are two main ways to share data:

  • Using Queue or Pipe – These are thread-safe and process-safe communication channels.
  • Using shared memory constructs like Value or Array – These allow multiple processes to read/write the same memory block.

For example, using a queue:

 from multiprocessing import Process, Queue

def worker(q):
    q.put("Data from process")

if __name__ == '__main__':
    q = Queue()
    p = Process(target=worker, args=(q,))
    p.start()
    print(q.get()) # Will print "Data from process"
    p.join()

Queues are often the preferred choice when you need to pass complex or dynamic data between processes.

Using Pools for Parallel Processing

If you have a large number of similar tasks to run, using a Pool is more efficient than manually managing processes. A pool creates a fixed number of worker processes and distributes tasks among them.

The most commonly used methods are:

  • map() – Blocks until all items are processed
  • apply_async() – Non-blocking, allows you to retrieve results later via a callback

Example using map() :

 from multiprocessing import Pool

def square(x):
    return x * x

if __name__ == '__main__':
    with Pool(4) as pool:
        result = pool.map(square, [1, 2, 3, 4, 5])
        print(result) # Outputs [1, 4, 9, 16, 25]

Pools are especially useful when dealing with batch operations like file processing, scraping, or mathematical transformations.

Performance Considerations and Gotchas

While multiprocessing can speed things up, it's not always faster. Spawning new processes comes with overhead — especially on Windows, where the entire interpreter needs to be re-spawned. So if your tasks are very small or fast, the time spent starting processes may outweigh the benefits.

Also, be careful with:

  • Large data transfers between processes — sending big chunks over queues can slow things down.
  • Shared state — even though possible, it adds complexity and potential bugs.
  • Platform differences — code that works fine on Linux might behave differently on macOS or Windows due to how processes are forked or spawned.

So think carefully about task size, data flow, and platform before diving deep into multiprocessing.

基本上就這些。

以上是探索與Python多處理的並發(fā)的詳細內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Laravel 教程
1597
29
PHP教程
1488
72
如何處理Python中的API身份驗證 如何處理Python中的API身份驗證 Jul 13, 2025 am 02:22 AM

處理API認證的關(guān)鍵在於理解並正確使用認證方式。 1.APIKey是最簡單的認證方式,通常放在請求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過client_id和client_secret獲取Token,再在請求頭中帶上BearerToken;4.為應(yīng)對Token過期,可封裝Token管理類自動刷新Token;總之,根據(jù)文檔選擇合適方式,並安全存儲密鑰信息是關(guān)鍵。

解釋Python斷言。 解釋Python斷言。 Jul 07, 2025 am 12:14 AM

Assert是Python用於調(diào)試的斷言工具,當(dāng)條件不滿足時拋出AssertionError。其語法為assert條件加可選錯誤信息,適用於內(nèi)部邏輯驗證如參數(shù)檢查、狀態(tài)確認等,但不能用於安全或用戶輸入檢查,且應(yīng)配合清晰提示信息使用,僅限開發(fā)階段輔助調(diào)試而非替代異常處理。

什麼是Python迭代器? 什麼是Python迭代器? Jul 08, 2025 am 02:56 AM

Inpython,IteratorSareObjectSthallowloopingThroughCollectionsByImplementing_iter __()和__next __()。 1)iteratorsWiaTheIteratorProtocol,使用__ITER __()toreTurnterateratoratoranteratoratoranteratoratorAnterAnteratoratorant antheittheext__()

什麼是Python型提示? 什麼是Python型提示? Jul 07, 2025 am 02:55 AM

typeHintsInpyThonsolverbromblemboyofambiguityandPotentialBugSindyNamalytyCodeByallowingDevelopsosteSpecefectifyExpectedTypes.theyenhancereadability,enablellybugdetection,andimprovetool.typehintsupport.typehintsareadsareadsareadsareadsareadsareadsareadsareadsareaddedusidocolon(

如何一次迭代兩個列表 如何一次迭代兩個列表 Jul 09, 2025 am 01:13 AM

在Python中同時遍歷兩個列表的常用方法是使用zip()函數(shù),它會按順序配對多個列表並以最短為準;若列表長度不一致,可使用itertools.zip_longest()以最長為準並填充缺失值;結(jié)合enumerate()可同時獲取索引。 1.zip()簡潔實用,適合成對數(shù)據(jù)迭代;2.zip_longest()處理不一致長度時可填充默認值;3.enumerate(zip())可在遍歷時獲取索引,滿足多種複雜場景需求。

Python Fastapi教程 Python Fastapi教程 Jul 12, 2025 am 02:42 AM

要使用Python創(chuàng)建現(xiàn)代高效的API,推薦使用FastAPI;其基於標準Python類型提示,可自動生成文檔,性能優(yōu)越。安裝FastAPI和ASGI服務(wù)器uvicorn後,即可編寫接口代碼。通過定義路由、編寫處理函數(shù)並返回數(shù)據(jù),可以快速構(gòu)建API。 FastAPI支持多種HTTP方法,並提供自動生成的SwaggerUI和ReDoc文檔系統(tǒng)。 URL參數(shù)可通過路徑定義捕獲,查詢參數(shù)則通過函數(shù)參數(shù)設(shè)置默認值實現(xiàn)。合理使用Pydantic模型有助於提升開發(fā)效率和準確性。

如何用Python測試API 如何用Python測試API Jul 12, 2025 am 02:47 AM

要測試API需使用Python的Requests庫,步驟為安裝庫、發(fā)送請求、驗證響應(yīng)、設(shè)置超時與重試。首先通過pipinstallrequests安裝庫;接著用requests.get()或requests.post()等方法發(fā)送GET或POST請求;然後檢查response.status_code和response.json()確保返回結(jié)果符合預(yù)期;最後可添加timeout參數(shù)設(shè)置超時時間,並結(jié)合retrying庫實現(xiàn)自動重試以增強穩(wěn)定性。

設(shè)置並使用Python虛擬環(huán)境 設(shè)置並使用Python虛擬環(huán)境 Jul 06, 2025 am 02:56 AM

虛擬環(huán)境能隔離不同項目的依賴。使用Python自帶的venv模塊創(chuàng)建,命令為python-mvenvenv;激活方式:Windows用env\Scripts\activate,macOS/Linux用sourceenv/bin/activate;安裝包使用pipinstall,生成需求文件用pipfreeze>requirements.txt,恢復(fù)環(huán)境用pipinstall-rrequirements.txt;注意事項包括不提交到Git、每次新開終端需重新激活、可用IDE自動識別切換。

See all articles