


Use Golang functions to build message-driven architectures in distributed systems
Apr 19, 2024 pm 01:33 PM使用 Golang 函數(shù)構(gòu)建消息驅(qū)動(dòng)的架構(gòu)包含以下步驟:創(chuàng)建事件源,產(chǎn)生事件。選擇消息隊(duì)列,用于存儲(chǔ)和轉(zhuǎn)發(fā)事件。部署 Go 函數(shù)作為訂閱者,從消息隊(duì)列訂閱和處理事件。
使用 Golang 函數(shù)在分布式系統(tǒng)中構(gòu)建消息驅(qū)動(dòng)的架構(gòu)
在分布式系統(tǒng)中,異步消息隊(duì)列和事件驅(qū)動(dòng)架構(gòu)變得越來(lái)越流行。使用 Golang 函數(shù),您可以輕松地在分布式系統(tǒng)中創(chuàng)建和部署維護(hù)這樣的架構(gòu)所需的可重用組件。
Go 函數(shù)簡(jiǎn)介
Go 函數(shù)是一個(gè)輕量級(jí)、基于事件驅(qū)動(dòng)的計(jì)算服務(wù),允許您部署和運(yùn)行無(wú)服務(wù)器功能。它們非常適合處理異步任務(wù),例如消息處理和事件處理。
構(gòu)建消息驅(qū)動(dòng)的架構(gòu)
要使用 Golang 函數(shù)構(gòu)建消息驅(qū)動(dòng)的架構(gòu),您需要:
- 創(chuàng)建一個(gè)事件源:這是生成事件的組件。在我們的例子中,事件源可以是傳感器、API 或另一個(gè)應(yīng)用程序。
- 選擇一個(gè)消息隊(duì)列:這將存儲(chǔ)和轉(zhuǎn)發(fā)事件。熱門選擇包括 Kafka、Pulsar 和 NATS。
- 部署 Go 函數(shù)作為訂閱者:函數(shù)將從消息隊(duì)列訂閱事件并處理它們。
實(shí)戰(zhàn)案例
考慮以下場(chǎng)景:您有一個(gè)傳感器網(wǎng)絡(luò),它生成與識(shí)別人員有關(guān)的事件。要處理這些事件,您可以:
- 發(fā)布事件到消息隊(duì)列:傳感器可以發(fā)布事件到消息隊(duì)列,如 Kafka。
- 部署 Go 函數(shù)作為 Kafka 訂閱者:函數(shù)可以訂閱 Kafka 主題并接收事件。
- 處理事件:函數(shù)可以解析每個(gè)事件并從傳感器數(shù)據(jù)中提取相關(guān)信息。
- 將處理后的數(shù)據(jù)存儲(chǔ)到數(shù)據(jù)庫(kù):函數(shù)可以將處理后的數(shù)據(jù)存儲(chǔ)到持久化存儲(chǔ)中,例如 MySQL 或 MongoDB。
代碼示例
以下 Go 函數(shù)是一個(gè) Kafka 訂閱者,它處理人員識(shí)別事件并將數(shù)據(jù)存儲(chǔ)到數(shù)據(jù)庫(kù):
package main import ( "context" "database/sql" "fmt" "log" "os" "github.com/segmentio/kafka-go" ) func main() { // 創(chuàng)建 Kafka reader reader := kafka.NewReader(kafka.ReaderConfig{ Brokers: []string{os.Getenv("KAFKA_BROKER")}, Topic: "person-events", GroupID: "person-events-group", }) // 創(chuàng)建數(shù)據(jù)庫(kù)連接 db, err := sql.Open("postgres", os.Getenv("DATABASE_URL")) if err != nil { log.Fatal(err) } // 不斷讀取消息并進(jìn)行處理 for { // 讀取消息 msg, err := reader.ReadMessage(context.Background()) if err != nil { log.Fatal(err) } // 解析消息 event := &PersonEvent{} if err := json.Unmarshal(msg.Value, event); err != nil { log.Printf("error parsing event: %v", err) continue } // 存儲(chǔ)到數(shù)據(jù)庫(kù) _, err = db.Exec("INSERT INTO person_events (timestamp, person_id) VALUES ($1, $2)", event.Timestamp, event.PersonID) if err != nil { log.Printf("error inserting into database: %v", err) } log.Printf("event processed: %v", event) } }
[event.go](https://gist.github.com/nilesh13agrawal/265e4d5e45f17b05b1bbc96949cc32b0) 中提供了完整的 PersonEvent 事件結(jié)構(gòu)。
The above is the detailed content of Use Golang functions to build message-driven architectures in distributed systems. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

The real use of battle royale in the dual currency system has not yet happened. Conclusion In August 2023, the MakerDAO ecological lending protocol Spark gave an annualized return of $DAI8%. Then Sun Chi entered in batches, investing a total of 230,000 $stETH, accounting for more than 15% of Spark's deposits, forcing MakerDAO to make an emergency proposal to lower the interest rate to 5%. MakerDAO's original intention was to "subsidize" the usage rate of $DAI, almost becoming Justin Sun's Solo Yield. July 2025, Ethe

What can truly make money stably is countercyclical traders with anti-human characteristics. 1. They identify whales in the market FOMO by fighting emotional kidnapping, and capture wrongly killed assets when panic sell-offs; 2. Establish mechanized trading discipline and strictly implement stop-profit and stop-loss rules to fight greed and fear; 3. Use cognitive arbitrage thinking to discover institutional trends and trend opportunities in advance through on-chain data and code updates and other underlying information, and ultimately solidify emotional isolation, data decision-making and countercyclical operations into trading instincts, thereby continuing to make profits in the encrypted market with amplified human nature.

MySQL needs to be optimized for financial systems: 1. Financial data must be used to ensure accuracy using DECIMAL type, and DATETIME is used in time fields to avoid time zone problems; 2. Index design should be reasonable, avoid frequent updates of fields to build indexes, combine indexes in query order and clean useless indexes regularly; 3. Use transactions to ensure consistency, control transaction granularity, avoid long transactions and non-core operations embedded in it, and select appropriate isolation levels based on business; 4. Partition historical data by time, archive cold data and use compressed tables to improve query efficiency and optimize storage.

MongoDBintroducedmulti-documenttransactionsinversion4.0,enablingatomicoperationsacrosscollectionsforstrongconsistency.Transactionsallowmultipleread/writeoperationstobegroupedasasingleunit,eitherallsucceedingorfailingtogether.Theyaresupportedinreplica

The top ten leading stablecoins in 2025 are forecasted as: 1. USDT ranks first with its first-mover advantage and extremely high liquidity; 2. USDC follows closely with high compliance and transparency; 3. DAI, as a decentralized stablecoin, has a solid position in DeFi; 4. FDUSD benefits from Binance's rapid development; 5. PYUSD relies on PayPal ecosystem to have great potential to connect to traditional payments; 6. USDD attracts users through high returns within the Tron ecosystem; 7. TUSD emphasizes transparency through real-time auditing and multi-institutional custody; 8. FRAX innovatively adopts score algorithm mechanism to improve capital efficiency; 9. GUSD is regulated by NYDFS and monthly audits ensure security; 10. USDP as

TosecureMySQLeffectively,useobject-levelprivilegestolimituseraccessbasedontheirspecificneeds.Beginbyunderstandingthatobject-levelprivilegesapplytodatabases,tables,orcolumns,offeringfinercontrolthanglobalprivileges.Next,applytheprincipleofleastprivile

Table of Contents Market Interpretation of the concentrated shipment of ancient giant whales, BTC prices quickly repair ETH close to $4,000 key position, polarization of pledge and fund demand, altcoin sector differentiation intensifies, Solana and XRP funds inflows highlight market hotspots pay attention to macro data and policy trends, and market fluctuations may intensify last week (July 22-July 28). BTC maintained a high-level oscillation pattern. The ETH capital inflow trend continues to improve, the ETH spot ETF has achieved net inflow for eight consecutive weeks, and the ETH market share has climbed to 11.8%. On July 25, affected by the massive selling of Galaxy Digital, BTC fell below $115,000 for a short time, reaching the lowest point

MySQL replication filtering can be configured in the main library or slave library. The main library controls binlog generation through binlog-do-db or binlog-ignore-db, which is suitable for reducing log volume; the data application is controlled by replicate-do-db, replicate-ignore-db, replicate-do-table, replicate-ignore-table and wildcard rules replicate-wild-do-table and replicate-wild-ignore-table. It is more flexible and conducive to data recovery. When configuring, you need to pay attention to the order of rules, cross-store statement behavior,
