亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Table of Contents
數(shù)學(xué)的研究に対する數(shù)學(xué)的自動化の影響
機械が數(shù)學(xué)をより集約化する方法
What is proof in the machine age
Automation allows mathematicians to reflect on their own value
Continued fractions in p-adic number field
Home Technology peripherals AI AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Apr 09, 2024 am 11:52 AM
Model math

AI は確かに數(shù)學(xué)を変えています。

最近、この問題に細(xì)心の注意を払っている陶哲軒氏が、「米國數(shù)學(xué)協(xié)會會報」の最新號を送ってくれました。

「機械は數(shù)學(xué)を変えるのか?」というテーマを中心に、多くの數(shù)學(xué)者が意見を述べ、そのプロセス全體は火花に満ち、ハードコアで刺激的でした。

著者には、フィールズ賞受賞者のアクシャイ?ベンカテシュ氏、中國の數(shù)學(xué)者鄭楽軍氏、ニューヨーク大學(xué)のコンピュータ科學(xué)者アーネスト?デイビス氏、その他業(yè)界で著名な學(xué)者を含む強力な顔ぶれが揃っています。

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

AI の世界は劇的に変化しました。ご存知のとおり、これらの記事の多くは 1 年前に投稿されたものですが、今年中に AI は次のような変化を遂げました。多くの重要な変更。

しかし、それにもかかわらず、これらの記事は依然として金に満ちており、テレンス?タオさえ叫ばせました:この分野の進(jìn)歩は速すぎます!私の未公開記事が冗長であるように見えます。

AI ツールが數(shù)學(xué)の分野を驚くべき速度で進(jìn)歩させていることは誰も否定できません。

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

人工知能は、純粋數(shù)學(xué)を含む科學(xué)分野における情報の収集と処理の方法に革命をもたらすのでしょうか?それは數(shù)學(xué)のやり方を変えるだろうか?

數(shù)學(xué)者の意見は分かれています。研究における機械學(xué)習(xí)の普及が目前に迫っていると信じている人もいれば、懐疑的な人もいます。1960 年代とその後の過度の楽観主義を振り返ると、 AIウィンター」。

しかし、數(shù)學(xué)研究の実踐では劇的な変化が起こる可能性が非常に高いです。さて、數(shù)學(xué)者はこれらの変化が引き起こす問題を検討する時が來ました。

嵐が近づいていることは疑いの余地がありません。

それでは、機械は數(shù)學(xué)を変えるのでしょうか?

數(shù)學(xué)的研究に対する數(shù)學(xué)的自動化の影響

この論文では、フィールズ賞受賞者のアクシャイ?ヴェンカテシュが數(shù)學(xué)的研究に対する自動化の影響について調(diào)査します。

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

論文アドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024- 01834-5/S0273-0979-2024-01834-5.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

この論文では、Akshay Venkatesh が興味深いアイデアを提案しました 実験 -

2017 年、DeepMind の Alphazero は、チェスと囲碁を一晩で學(xué)習(xí)し、人間を超えました。

10 年後、「Alephzero」 (AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao と表記) も同じ形式の數(shù)學(xué)を行ったらどうなるでしょうか?

この記事の「數(shù)學(xué)」は「純粋な數(shù)學(xué)的研究」を指します。

私たちの出発點は、「Alephzero」が高校と大學(xué)の數(shù)學(xué)を獨學(xué)で學(xué)び、SpringerVerlag の數(shù)學(xué)大學(xué)院シリーズのすべての演習(xí)を完了したと仮定することです。翌朝、數(shù)學(xué)者がそれを発表し、子供たちがそれをダウンロードし、私たちのコンピューティング リソースで実行しました。

これは明らかに非現(xiàn)実的なため、確かに思考実験です。視野を今後 10 年または 20 年に限定することで、この思考に伴う可能性から距離を置くことができます。これを技術(shù)の進(jìn)歩の結(jié)果として起こる社會的変化として考えることで、より極端なタイプの機械知能について考えることを避けることができます。そこでは、アレフゼロを生きた協(xié)力者ではなく動力ツールとしてモデル化します。

私たちは次のように自分を慰めることができます。実際、この前提は私たちからかけ離れているので、考える必要はありません。しかし、ほんのわずかな可能性さえ許せば、これは20年後に起こる可能性があります。

數(shù)學(xué)者と問題ネットワークのベイズ相互作用を通じて、私たちの価値メカニズムの一部を示す非常に大まかなモデルを提供します。ここで、「Alephzero」がこのネットワークにどのような影響を與え、結(jié)果を変えるかを検討します。

これまで見てきたように、困難の認(rèn)識は、価値を構(gòu)築する方法の重要な部分です。

特定の狀況に関係なく、「Alephzero」は私たちの問題解決能力を変え、それによって問題の難しさに対する私たちの認(rèn)識を変えます。

數(shù)學(xué)的プロセスの中で最も速く加速できる部分は、知覚される困難さを最も大きく軽減し、上記のモデルによれば、狀態(tài)は最も大きな軽減を受けることになります。同様のパターンが自動化の多くのインスタンスで発生します。

最後に、「Alephzero」は數(shù)學(xué)における興味深い問題の範(fàn)囲を大幅に拡張します。それはプロの數(shù)學(xué)者と他の人々との間の競爭の場を平等にするでしょう。

機械が數(shù)學(xué)をより集約化する方法

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

論文アドレス: https://www.ams .org/journals/bull/2024-61-02/S0273-0979-2024-01827-8/S0273-0979-2024-01827-8.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

## 數(shù)學(xué)者の鄭楽軍氏は、テクノロジーによって數(shù)學(xué)の勉強方法が変わったため、テクノロジーの進(jìn)歩に直面して人間の數(shù)學(xué)者を不要にするのではなく、このテクノロジーを利用して數(shù)學(xué)をより「収束」させることができると信じています。

「數(shù)學(xué)を行う」とはどういうことかを考える中で、彼女は數(shù)學(xué)テクノロジーの次の側(cè)面を検討しました:教育と學(xué)習(xí)、質(zhì)問、コラボレーション、コミュニケーション、研究行為。

これは厳密な分析ではなく、數(shù)學(xué)者としての彼女の経験に基づいた賢明な考察です。

Zheng Lejun 氏は、コンピューター支援の校正チェッカーや証明ジェネレーターさえもいくつか存在しますが、テクノロジーは數(shù)學(xué)研究の最も奧深く、創(chuàng)造的で人道的な側(cè)面に実際には侵入していないと考えています。 。

ディープクリエイティブな部分では、最初にアイデアを考えることが含まれます。定義のアイデア、証明のアイデア、數(shù)學(xué)のさまざまな部分を接続するアイデア、物事を表現(xiàn)する新しい方法のアイデア、アイデアなどです。記號や用語、図式的な推論のアイデア、視覚的表現(xiàn)のアイデア。

機械に數(shù)學(xué)的研究をさせるには、それを行うように指示する方法を見つけなければなりません。自分で行う方法がわからない場合は、私たちにとってその方法を教えるのは難しいです。

機械はある程度の証明チェックを行うことができますが、密かに數(shù)學(xué)者は完全に厳密な証明を書くことはできないことを知っています。私たちは論理に基づいて議論し、論理に裏付けられています。私たちの同僚が記入できると思われる手順。

これらのステップのサイズは定義されていないため、マシンにそれを?qū)g行するように指示するのは困難です。

數(shù)學(xué)の學(xué)生なら誰でも知っているように、証明を生成することは、単に証明をチェックすることとはまったく異なるスキルです。自分で新しい証拠を考え出すよりも、他の人の証拠に従う方がはるかに簡単です。これは、數(shù)學(xué)研究においてコンピュータが人間の數(shù)學(xué)者を決して超えることができないということではありません。

彼女の意見では、コンピューターが人間の數(shù)學(xué)者よりも優(yōu)れているのは、

コンピューターは、検索によってすべての可能なアクションを検索する能力が優(yōu)れているということです??激à椁欷毪工伽皮握摾淼膸⒔Y(jié)が現(xiàn)在わかっているので、彼らは新しい數(shù)學(xué)を考え出すことを試みることができます。

これには、想像力の飛躍、推測、直感が必要ですが、コンピューターでこれを行うには何が十分でしょうか?そのアイデアはとても興味深いですね。

#コンピュータは論理的推論に役立つのか

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

論文アドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01833-3/S0273-0979-2024-01833-3.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

コンピューターは數(shù)學(xué)研究の方法に革命をもたらし、複雑な計算を簡単に実行できるようにしました。

しかし次に、彼らは私たちの論理的推論のアシスタントになるでしょうか?彼らはいつか獨立して推論できるでしょうか?

この記事では、ニューラル ネットワーク、コンピューター定理証明器、大規(guī)模言語モデルにおける最近の重要な開発について説明します。

#正式なツールは數(shù)學(xué)的研究の向上にどのように役立つか

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

紙のアドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01832-1/S0273-0979-2024-01832-1.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

20 世紀(jì)初頭以來、私たちは數(shù)學(xué)的な定義と証明が厳密な構(gòu)文と規(guī)則を備えた正式なシステムを通じて表現(xiàn)できることを理解してきました。

これに基づいて、コンピューター証明アシスタントの開発により、數(shù)學(xué)的知識をデジタル形式でエンコードできるようになります。

この記事では、この種のテクノロジーとその関連ツールが、より優(yōu)れた數(shù)學(xué)的研究にどのように役立つかを検討します。

#定理証明器を使用して數(shù)學(xué)研究における複雑な問題を単純化する

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

##論文アドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01831-X/S0273-0979-2024-01831-X.pdf

この記事では、インタラクティブな定理証明器を使用して、抽象的な境界を設(shè)定することで數(shù)學(xué)研究における複雑な問題を単純化する方法を検討します。

奇妙な新しい世界: LLM により、數(shù)學(xué)者はより自然な言語で証明助手とコミュニケーションできるようになります

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

#論文アドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01830-8/S0273-0979-2024-01830-8.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

証明アシスタントとして知られる現(xiàn)在のコンピューター プログラムは、數(shù)學(xué)的証明の正しさを検証できますが、多くの人にとっては難しい特殊な証明言語を使用しています。數(shù)學(xué)的それは家族にとっての閾値を構(gòu)成します。

大規(guī)模言語モデル (LLM) には、この障壁を打ち破る可能性があり、數(shù)學(xué)者がより自然な言語で証明アシスタントとコミュニケーションできるようになります。これにより、直観力が養(yǎng)われるだけでなく、推論が正しいことも保証されます。

深層學(xué)習(xí)ツールを使用した純粋な數(shù)學(xué)的研究

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

紙のアドレス: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01829-1/S0273-0979-2024-01829-1.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao#この記事は個人的な経験であり、純粋な數(shù)學(xué)者が研究で深層學(xué)習(xí)ツールを使用しようとするときに期待することを非公式に共有するものです。

AI は數(shù)學(xué)的研究を行うことができますか?

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Paper address: https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01828-X/S0273- 0979-2024-01828-X.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

This article explores the current performance of AI technology in solving word problems that combine basic mathematics and common sense reasoning. Capabilities and limitations.

The author reviews three methods developed using AI natural language technology: directly giving answers, generating computer programs that solve problems, and generating formalizations that can be used by automated theorem testers Expression.

The author believes that the importance of these limitations in the development of AI technology for pure mathematical research has not yet been clearly defined, but they are extremely critical in mathematical applications and in developing computers that can understand human-written software. Mathematics content is also important during the program.

What is proof in the machine age

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Paper address: https://www. ams.org/journals/bull/2024-61-02/S0273-0979-2024-01826-6/S0273-0979-2024-01826-6.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

In this article, the author explores the nature of proof and its evolution in the machine age, analyzing it by comparing the values ??in traditional verification and computer verification.

The method ultimately proposed in the article may allow computers to prove successful strategies borrowed from human experience.

Automation allows mathematicians to reflect on their own value

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Paper address: https://www .ams.org/journals/bull/2024-61-02/S0273-0979-2024-01825-4/S0273-0979-2024-01825-4.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

In the paper, the authors harshly criticize colleagues for their lack of thinking, especially when considering the mechanized future of mathematics, and for ignoring important debates about technology and artificial intelligence at a wider level in society.

Continued fractions in p-adic number field

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Paper address: https://www .ams.org/journals/bull/2024-61-02/S0273-0979-2024-01819-9/S0273-0979-2024-01819-9.pdf

Continued fractions It has a long history in number theory, especially in the field of Diophantine approximation.

This article aims to outline the core results of p-adic continued fraction theory, which is a continued fraction defined on the p-adic number field Qp.

The content will start from basic concepts to introduce the latest progress and open issues currently faced.

Tao Zhexuan posted: Machine assisted proof

By the way, Tao Zhexuan also made use of the "Machine assisted proof" of the paper he wrote before.

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

Paper address: https://terrytao.files.wordpress.com/2024/03/machine-assisted-proof-notices.pdf

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao

In this paper, Tao Zhexuan said that with the help of LLM's ability to process natural language input, they are likely to become a user-friendly platform, allowing mathematicians without specific software knowledge to use advanced tools.

Today, he and many scientists are accustomed to using these models to generate simple code in various languages, including symbolic algebra packages, or to create complex diagrams and images.

Currently, formal proof verification (formal proof verification) relies heavily on human effort, which makes it impractical to fully formalize a large number of current research papers in real time.

In the field of partial differential equations, it is often necessary to go through multiple pages of calculations to estimate integral expressions involving one or more unknown functions (such as the solution of a PDE).

This involves using the bounds of these functions in different function space norms (such as Sobolev space norm), combined with standard inequalities (such as H?lder inequality and Sobolev inequality), and such as Differential identities in integral or integral notation.

Although this type of calculation is a routine operation, it may contain various degrees of errors (such as sign errors). For reviewers, carefully checking these calculations is tedious and time-consuming. , and the calculations themselves hardly provide deeper mathematical understanding or insight other than the final estimate being correct.

It is conceivable that in the future tools may be developed to establish mathematical estimates in an automatic or semi-automatic manner, and replace the current lengthy and uninspiring estimation proofs with a pointing formal proof Link to the certificate.

Going a step further, we might be able to expect that, based on an initial set of assumptions and methods, a future AI tool will be able to come up with the best estimate it can, without having to do a paper first Pen calculations were made to predict what this estimate might be.

At present, it is estimated that the possible state space is too complex to be explored automatically; but with the development of technology, the possibility of realizing such automated exploration is not out of reach.

Once achieved, we will be able to conduct mathematical exploration at a scale that currently seems unfeasible.

Let’s take partial differential equations as an example. Current research usually only studies one or two equations at a time; but in the future, we may be able to study hundreds of equations at the same time.

For example, first develop a complete argument for an equation, and then let the AI ??tool adapt these arguments to a large number of related equation families, if necessary, when the expansion of the argument presents unconventional situations , the AI ??will ask the author questions.

Now, in other areas of mathematics, such as graph theory, the first signs of such large-scale mathematical exploration are beginning to appear.

However, these current preliminary attempts are difficult to promote on a large scale because they rely on AI models with extremely high computational costs or require a large amount of expert-level human participation and supervision.

However, Terence Tao believes that in the near future, we will witness the birth of more innovative machine-assisted mathematical methods.

The above is the detailed content of AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1488
72
AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao Apr 09, 2024 am 11:52 AM

AI is indeed changing mathematics. Recently, Tao Zhexuan, who has been paying close attention to this issue, forwarded the latest issue of "Bulletin of the American Mathematical Society" (Bulletin of the American Mathematical Society). Focusing on the topic "Will machines change mathematics?", many mathematicians expressed their opinions. The whole process was full of sparks, hardcore and exciting. The author has a strong lineup, including Fields Medal winner Akshay Venkatesh, Chinese mathematician Zheng Lejun, NYU computer scientist Ernest Davis and many other well-known scholars in the industry. The world of AI has changed dramatically. You know, many of these articles were submitted a year ago.

Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo May 07, 2024 pm 04:13 PM

Imagine an artificial intelligence model that not only has the ability to surpass traditional computing, but also achieves more efficient performance at a lower cost. This is not science fiction, DeepSeek-V2[1], the world’s most powerful open source MoE model is here. DeepSeek-V2 is a powerful mixture of experts (MoE) language model with the characteristics of economical training and efficient inference. It consists of 236B parameters, 21B of which are used to activate each marker. Compared with DeepSeek67B, DeepSeek-V2 has stronger performance, while saving 42.5% of training costs, reducing KV cache by 93.3%, and increasing the maximum generation throughput to 5.76 times. DeepSeek is a company exploring general artificial intelligence

DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! Mar 21, 2024 pm 05:21 PM

This paper explores the problem of accurately detecting objects from different viewing angles (such as perspective and bird's-eye view) in autonomous driving, especially how to effectively transform features from perspective (PV) to bird's-eye view (BEV) space. Transformation is implemented via the Visual Transformation (VT) module. Existing methods are broadly divided into two strategies: 2D to 3D and 3D to 2D conversion. 2D-to-3D methods improve dense 2D features by predicting depth probabilities, but the inherent uncertainty of depth predictions, especially in distant regions, may introduce inaccuracies. While 3D to 2D methods usually use 3D queries to sample 2D features and learn the attention weights of the correspondence between 3D and 2D features through a Transformer, which increases the computational and deployment time.

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! May 06, 2024 pm 04:13 PM

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

KAN, which replaces MLP, has been extended to convolution by open source projects KAN, which replaces MLP, has been extended to convolution by open source projects Jun 01, 2024 pm 10:03 PM

Earlier this month, researchers from MIT and other institutions proposed a very promising alternative to MLP - KAN. KAN outperforms MLP in terms of accuracy and interpretability. And it can outperform MLP running with a larger number of parameters with a very small number of parameters. For example, the authors stated that they used KAN to reproduce DeepMind's results with a smaller network and a higher degree of automation. Specifically, DeepMind's MLP has about 300,000 parameters, while KAN only has about 200 parameters. KAN has a strong mathematical foundation like MLP. MLP is based on the universal approximation theorem, while KAN is based on the Kolmogorov-Arnold representation theorem. As shown in the figure below, KAN has

The local running performance of the Embedding service exceeds that of OpenAI Text-Embedding-Ada-002, which is so convenient! The local running performance of the Embedding service exceeds that of OpenAI Text-Embedding-Ada-002, which is so convenient! Apr 15, 2024 am 09:01 AM

Ollama is a super practical tool that allows you to easily run open source models such as Llama2, Mistral, and Gemma locally. In this article, I will introduce how to use Ollama to vectorize text. If you have not installed Ollama locally, you can read this article. In this article we will use the nomic-embed-text[2] model. It is a text encoder that outperforms OpenAI text-embedding-ada-002 and text-embedding-3-small on short context and long context tasks. Start the nomic-embed-text service when you have successfully installed o

See all articles