亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Table of Contents
Method Overview
Experiments and Analysis
Home Technology peripherals AI GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

Jul 17, 2023 pm 04:57 PM
Model Tuning

Since the advent of GPT-4, people have been amazed by its powerful emergence capabilities, including excellent language understanding capabilities, generation capabilities, logical reasoning capabilities, etc. These capabilities make GPT-4 one of the most cutting-edge models in machine learning. However, OpenAI has not disclosed any technical details of GPT-4 so far.

Last month, George Hotz mentioned GPT-4 in an interview with an AI technology podcast called Latent Space, saying that GPT-4 is actually is a hybrid model. Specifically, George Hotez said that GPT-4 uses an integrated system composed of 8 expert models, each of which has 220 billion parameters (slightly more than the 175 billion parameters of GPT-3), and these Models are trained on different data and task distributions.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

Interview from Latent Space.

This may be just a speculation by George Hotez, but this model does have some legitimacy. Recently, a paper jointly published by researchers from Google, UC Berkeley, MIT and other institutions confirmed that the combination of hybrid expert model (MoE) and instruction tuning can significantly improve the performance of large language models (LLM).

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPicture

Paper address: https://arxiv.org/pdf/2305.14705.pdf

The sparse mixed expert model is a special neural network architecture that can add learnable parameters to large language models (LLM) without increasing the cost of inference. Instruction tuning is a technique for training LLM to follow instructions. The study found that MoE models benefited more from instruction tuning than dense models, and therefore proposed to combine MoE and instruction tuning.

The study was conducted empirically in three experimental settings, including

  • in the absence of instruction tuning. Direct fine-tuning of a single downstream task;
  • After instruction tuning, perform in-context few-sample or zero-sample generalization on the downstream task;
  • Instruction tuning is followed by further fine-tuning of individual downstream tasks.

In the first case, the MoE model is generally inferior to a dense model with the same computational power. However, with the introduction of instruction tuning (the second and third cases), FLAN-MoE_32B (Fine-tuned LAnguage Net, abbreviated as Flan, is an instruction-tuned model, Flan-MoE is instruction tuning). Excellent MoE) outperforms FLAN-PALM_62B on four benchmark tasks, but only uses one-third of the FLOPs.

As shown in the figure below, before using instruction tuning, MoE→FT is not as good as T5→FT. After instruction tuning, Flan-MoE→FT outperforms Flan-T5→FT. MoE gains more from instruction tuning (15.6) than dense models (10.2):

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPicture

It seems that GPT -4 There is some basis for adopting a hybrid model. MoE can indeed gain greater benefits from instruction tuning:

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPicture

Method Overview

The researchers used sparse activation MoE (Mixture-of-Experts) in the FLAN-MOE (a set of sparse mixed expert models fine-tuned by instructions) model. Additionally, they replaced the feedforward components of other Transformer layers with MoE layers.

Each MoE layer can be understood as an "expert", and then the softmax activation function is used to model these experts to obtain a probability distribution.

Although each MoE layer has many parameters, the experts are sparsely activated. This means that for a given input token, only a limited subset of experts can complete the task, thus providing greater capacity to the model.

For a MoE layer with E experts, this effectively provides O (E^2) different feedforward network combinations, allowing for greater computational flexibility.


Since FLAN-MoE is an instruction-tuned model, instruction tuning is very important. This study fine-tuned FLAN-MOE based on the FLAN collective data set. Furthermore, this study adjusted the input sequence length of each FLAN-MOE to 2048 and the output length to 512.

Experiments and Analysis

On average, Flan-MoE performs better across all model scales without adding any additional computation. Better than its dense counterpart (Flan-T5).

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPictures

Number of experts. Figure 4 shows that as the number of experts increases, initially the model benefits from a richer set of specialized subnetworks, each capable of handling a different task or aspect in the problem space. This approach makes MoE highly adaptable and efficient in handling complex tasks, thereby improving performance overall. However, as the number of experts continues to increase, the model performance gains begin to decrease, eventually reaching a saturation point.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPicture

Figure 3 and Table 1 provide a detailed study of how different routing decisions affect instruction tuning performance: via FLAN- A comparison between the Switch and FLAN-GS strategies shows that activating more experts improves performance across the four benchmarks. Among these benchmarks, the MMLU-Direct model shows the most significant improvement, increasing from 38.0% to 39.9% for BASE/LARGE-sized models.

Notably, instruction tuning significantly amplified the performance of the MoE model in preserving MMLU, BBH, and internal QA and inference benchmarks compared to dense models of equivalent capacity . These advantages are further amplified for larger MoE models. For example, instruction tuning improves performance by 45.2% for ST_32B, while for FLAN-PALM_62B this improvement is relatively small at about 6.6%.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

When doing model extensions, Flan-MoE (Flan-ST-32B) outperforms Flan-PaLM-62B.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform betterPicture

#In addition, this study freezes the gating function, expert module and MoE of the given model. Some analytical experiments were conducted on parameters. As shown in Table 2 below, experimental results show that freezing the expert module or MoE component has a negative impact on model performance.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

On the contrary, the freeze gating function will slightly improve the model performance, although it is not obvious. The researchers speculate that this observation is related to the underfitting of FLAN-MOE. The study also conducted ablation experiments to explore the fine-tuning data efficiency ablation study described in Figure 5 below.

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

Finally, in order to compare the gap between direct fine-tuning of MoE and FLAN-MOE, this study conducted single-task fine-tuning of MoE, single-task Experiments were conducted on fine-tuned FLAN-MoE and dense models, and the results are shown in Figure 6 below:

GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better

Interested readers can read the original text of the paper to learn more More research content.

The above is the detailed content of GPT-4 uses hybrid large models? Research proves that MoE+ instruction tuning indeed makes large models perform better. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1488
72
AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao Apr 09, 2024 am 11:52 AM

AI is indeed changing mathematics. Recently, Tao Zhexuan, who has been paying close attention to this issue, forwarded the latest issue of "Bulletin of the American Mathematical Society" (Bulletin of the American Mathematical Society). Focusing on the topic "Will machines change mathematics?", many mathematicians expressed their opinions. The whole process was full of sparks, hardcore and exciting. The author has a strong lineup, including Fields Medal winner Akshay Venkatesh, Chinese mathematician Zheng Lejun, NYU computer scientist Ernest Davis and many other well-known scholars in the industry. The world of AI has changed dramatically. You know, many of these articles were submitted a year ago.

Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo May 07, 2024 pm 04:13 PM

Imagine an artificial intelligence model that not only has the ability to surpass traditional computing, but also achieves more efficient performance at a lower cost. This is not science fiction, DeepSeek-V2[1], the world’s most powerful open source MoE model is here. DeepSeek-V2 is a powerful mixture of experts (MoE) language model with the characteristics of economical training and efficient inference. It consists of 236B parameters, 21B of which are used to activate each marker. Compared with DeepSeek67B, DeepSeek-V2 has stronger performance, while saving 42.5% of training costs, reducing KV cache by 93.3%, and increasing the maximum generation throughput to 5.76 times. DeepSeek is a company exploring general artificial intelligence

DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! Mar 21, 2024 pm 05:21 PM

This paper explores the problem of accurately detecting objects from different viewing angles (such as perspective and bird's-eye view) in autonomous driving, especially how to effectively transform features from perspective (PV) to bird's-eye view (BEV) space. Transformation is implemented via the Visual Transformation (VT) module. Existing methods are broadly divided into two strategies: 2D to 3D and 3D to 2D conversion. 2D-to-3D methods improve dense 2D features by predicting depth probabilities, but the inherent uncertainty of depth predictions, especially in distant regions, may introduce inaccuracies. While 3D to 2D methods usually use 3D queries to sample 2D features and learn the attention weights of the correspondence between 3D and 2D features through a Transformer, which increases the computational and deployment time.

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! May 06, 2024 pm 04:13 PM

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

KAN, which replaces MLP, has been extended to convolution by open source projects KAN, which replaces MLP, has been extended to convolution by open source projects Jun 01, 2024 pm 10:03 PM

Earlier this month, researchers from MIT and other institutions proposed a very promising alternative to MLP - KAN. KAN outperforms MLP in terms of accuracy and interpretability. And it can outperform MLP running with a larger number of parameters with a very small number of parameters. For example, the authors stated that they used KAN to reproduce DeepMind's results with a smaller network and a higher degree of automation. Specifically, DeepMind's MLP has about 300,000 parameters, while KAN only has about 200 parameters. KAN has a strong mathematical foundation like MLP. MLP is based on the universal approximation theorem, while KAN is based on the Kolmogorov-Arnold representation theorem. As shown in the figure below, KAN has

The local running performance of the Embedding service exceeds that of OpenAI Text-Embedding-Ada-002, which is so convenient! The local running performance of the Embedding service exceeds that of OpenAI Text-Embedding-Ada-002, which is so convenient! Apr 15, 2024 am 09:01 AM

Ollama is a super practical tool that allows you to easily run open source models such as Llama2, Mistral, and Gemma locally. In this article, I will introduce how to use Ollama to vectorize text. If you have not installed Ollama locally, you can read this article. In this article we will use the nomic-embed-text[2] model. It is a text encoder that outperforms OpenAI text-embedding-ada-002 and text-embedding-3-small on short context and long context tasks. Start the nomic-embed-text service when you have successfully installed o

See all articles