Description
Project | Description |
---|---|
Python Interpreter | 3.10. 6 |
Counter module
In Python’s collections module, a very commonly used module is Counter. Counter is a simple counter used to count the number of certain hashable objects. It stores elements and their counts in the form of a dictionary.
Counter() class
ClassCounter() can count the parameters passed to this class according to certain rules, and use the counting object and the counting result as the key The value pairs are returned in the form of a dictionary.
Counter(iterable=None, /, **kwds)
Give a chestnut
from collections import Counter # 返回一個(gè)空的 Counter 對象 cnt = Counter() print(cnt) # 將可迭代對象(字符串)作為參數(shù) cnt = Counter('Hello World') print(cnt) # 將可迭代對象(列表)作為參數(shù) cnt = Counter(['a', 'a', 'b', 'd', 'c', 'd']) print(cnt) # 使用可迭代對象(字典)作為參數(shù) cnt = Counter({'a': 1, 'b': 2, 'd': 3, 'c': 2}) print(cnt) # 使用關(guān)鍵字參數(shù) cnt = Counter(a=1, b=2, d=3, c=2) print(cnt)
Execution effect
Counter()
Counter({' l': 3, 'o': 2, 'H': 1, 'e': 1, ' ': 1, 'W': 1, 'r': 1, 'd': 1})
Counter({'a': 2, 'd': 2, 'b': 1, 'c': 1})
Counter({'d': 3, 'b': 2, 'c': 2, 'a': 1})
Counter({'d': 3, 'b': 2, 'c': 2, 'a': 1})
Counter () Object
Dictionary
The result returned by Counter() is a dictionary, which has most of the methods of an ordinary dictionary. In most cases, you can operate Counter objects just like dictionaries. For this, please refer to the following example:
from collections import Counter cnt = Counter('Hello World') print(cnt) # 輸出 Counter 對象中的鍵值對列表 print(cnt.items()) # 移除 Counter 對象中的最后一個(gè)鍵值對 print(cnt.popitem()) print(cnt) # 輸出 Counter 中鍵 l 對應(yīng)的值 print(cnt['l'])
Execution result
Counter({'l': 3, 'o': 2, 'H' : 1, 'e': 1, ' ': 1, 'W': 1, 'r': 1, 'd': 1})
dict_items([('H', 1), ('e ', 1), ('l', 3), ('o', 2), (' ', 1), ('W', 1), ('r', 1), ('d', 1 )])
('d', 1)
Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, ' ': 1, 'W ': 1, 'r': 1})
3
Ordering
Dictionaries in Python are unordered,Unordered## The meaning of # does not mean that the key-value pairs in the dictionary have no order, but that the order of the key-value pairs in the dictionary is unpredictable. For this, please refer to the following example:
d = {'a': 1, 'b': 2, 'c': 3} for key in d: print(key)The output of this example may be:
aIt may also be :b
c
bOf course there are other possibilities, so I won’t list them all here. Python has officially optimized the dictionary in thec
a
Python 3.6 version so that it can remember the order in which key-value pairs are inserted. After this, the dictionary looks less cluttered (the order of key-value pairs in the dictionary becomes predictable).
KeyErrorIn Python's built-in dictionary, if you try to access a key that does not exist, Python will throw aKeyError exception error. For this, please refer to the following example:
d = dict([('a', 1), ('b', 2), ('c', 3)]) print(d) # 嘗試訪問字典 d 中不存在的鍵 print(d['d'])
Execution effect
Traceback (most recent call last):File "C:\main. py", line 5, in
print(d['d'])
KeyError: 'd'
{'a': 1, 'b': 2, 'c' : 3}
Same scene. This time, we have Counter as the protagonist.
from collections import Counter cnt = Counter({'a': 1, 'b': 2, 'c': 3}) print(cnt) # 嘗試訪問 Counter 中不存在的鍵 print(cnt['d'])
Execution effect
KeyError exception will not be thrown, but Returns the default count value 0.
Counter({'c': 3, 'b': 2, 'a': 1})Magic method__missing__0
__missing__() is a special method in Python used to handle the situation when the key does not exist when accessing the value in the dictionary by key. When we use a dictionary index to access a key that does not exist, Python will call the special method
__missing__() to try to return a suitable value. If the __missing__() method is not implemented, Python will throw a KeyError exception. For this, please refer to the following example:
# 創(chuàng)建一個(gè)字典對象,該對象繼承自 Python 內(nèi)置的 dict 對象 class MyDict(dict): def __missing__(self, key): return 0 # 實(shí)例化 MyDict() 對象 myDict = MyDict() # 嘗試訪問 myDict 對象中不存在的鍵 a print(myDict['a'])
Execution effect
0update() method
# The
##Counter object and the dict object also implement the update() method. Use the update() method to merge the dictionary as a parameter into the dict object that calls the method. The difference is that when the update() method of the dict object encounters the same key, it will perform the overwrite operation on the value corresponding to the key. When the update() method of the Counter object encounters the same key, it will perform the overlay operation on the value corresponding to the key. For this, please refer to the following example: from collections import Counter
# Python 中內(nèi)置的 dict 對象
d = dict([('a', 1), ('b', 2), ('c', 3)])
print(d)
d.update({'a': 4})
print(d)
print()
# Counter 對象
cnt = Counter({'a': 1, 'b': 2, 'c': 3})
print(cnt)
cnt.update({'a': 4})
print(cnt)
{'a': 4, 'b': 2, 'c': 3}Counter({'a': 5, 'c': 3, 'b': 2})
Counter({'c': 3, 'b': 2, 'a': 1} )
Counter 對象的常用方法
most_common()
most_common() 方法將返回一個(gè)列表,列表中的元素均為 Counter 對象中的鍵值對組成的元組。元組在列表中的順序取決于計(jì)數(shù)值(鍵值對中的值)的大小。計(jì)數(shù)值更大的元組將位于列表的前端,計(jì)數(shù)值相等的元組將按照它們首次在列表中出現(xiàn)的順序進(jìn)行排列(先出現(xiàn)的元組將更靠近列表的前端)。
most_common() 默認(rèn)將使用 Counter 對象中所有的鍵值對組成的元組作為返回列表中的元素。你可以通過向該方法提供一個(gè)數(shù)值,該數(shù)值將指定放回的列表中的元素的數(shù)量。
舉個(gè)栗子
from collections import Counter cnt = Counter({'a': 1, 'b': 2, 'c': 3}) print(cnt) print() print(cnt.most_common()) # 返回由 Counter 中計(jì)數(shù)值最大的兩個(gè) # 鍵值對構(gòu)成的元組所組成的列表 print(cnt.most_common(2)) # 返回由 Counter 中計(jì)數(shù)值最大的 # 鍵值對構(gòu)成的元組所組成的列表 print(cnt.most_common(1))
執(zhí)行效果
Counter({'c': 3, 'b': 2, 'a': 1})
[('c', 3), ('b', 2), ('a', 1)]
[('c', 3), ('b', 2)]
[('c', 3)]
elements()
elements() 方法將返回一個(gè)以 Counter 對象中的鍵為元素的迭代器,其中每個(gè)元素將重復(fù)出現(xiàn)計(jì)數(shù)值所指定的次數(shù)。
迭代器中的元素將存在如下特點(diǎn):
元素將會(huì)按照其首次添加到 Counter 對象中的順序進(jìn)行返回。
某個(gè)鍵對應(yīng)的計(jì)數(shù)值小于一,那么該鍵將不會(huì)作為元素出現(xiàn)在 element() 方法返回的迭代器中。
舉個(gè)栗子
from collections import Counter cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4}) print(cnt) print() print(list(cnt.elements()))
執(zhí)行效果
Counter({'c': 3, 'b': 2, 'a': 1, 'd': -4})
['a', 'b', 'b', 'c', 'c', 'c']
total()
total() 方法將返回 Counter 對象中,所有計(jì)數(shù)值累加后得到的結(jié)果。對此,請參考如下示例:
from collections import Counter cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4}) cnt1 = Counter('Hello World') print(cnt.total()) print(cnt1.total())
執(zhí)行效果
2
11
subtract()
該方法的效果與 Counter 對象的 update() 方法類似。如果說 update() 方法執(zhí)行的是 加 操作,那么 subtract() 方法執(zhí)行的則是 減 操作。對此,請參考如下示例:
from collections import Counter cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4}) cnt.subtract({'a': 0, 'b': 1, 'd': -11}) print(cnt)
執(zhí)行效果
Counter({'d': 7, 'c': 3, 'a': 1, 'b': 1})
Counter 對象間的運(yùn)算
注:
本部分內(nèi)容中講解到的運(yùn)算符僅能在 Python 3.3 及以后版本中正常使用。
加法運(yùn)算
在 Python 的 Counter 模塊中,兩個(gè) Counter 對象可以相加,相加后將返回一個(gè)新的 Counter 對象,其中每個(gè)元素的計(jì)數(shù)是兩個(gè)原始 Counter 對象中該元素計(jì)數(shù)的總和。可以通過使用加法運(yùn)算符來執(zhí)行此操作。對此,請參考如下示例:
from collections import Counter cnt = Counter('Hello') cnt1 = Counter('World') print(cnt) print(cnt1) print(cnt + cnt1)
執(zhí)行效果
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, 'W': 1, 'r': 1, 'd': 1})
注:
在 Counter 對象間的運(yùn)算過程中,對于 Counter 中不存在的鍵,其計(jì)數(shù)值為零。
減法運(yùn)算
在 Python 的 Counter 模塊中,可以使用減法運(yùn)算符來對兩個(gè) Counter 對象進(jìn)行減法運(yùn)算,即將左側(cè) Counter 對象中的計(jì)數(shù)器值減去右側(cè) Counter 對象中相同鍵的計(jì)數(shù)器值,最后返回一個(gè)新的 Counter 對象。對此,請參考如下示例:
from collections import Counter cnt = Counter('cook') cnt1 = Counter('coder') print(cnt) print(cnt1) print(cnt - cnt1)
執(zhí)行效果
Counter({'o': 2, 'c': 1, 'k': 1})
Counter({'c': 1, 'o': 1, 'd': 1, 'e': 1, 'r': 1})
Counter({'o': 1, 'k': 1})
注:
在 Counter 對象間的運(yùn)算過程中,對于 Counter 中不存在的鍵,其計(jì)數(shù)值為零。
并集運(yùn)算
Counter 對象之間的并集運(yùn)算是指兩個(gè) Counter 對象按照鍵的并集進(jìn)行運(yùn)算,返回的結(jié)果是一個(gè)新的 Counter 對象,其中包含的鍵和值均為 原始 Counter 對象中存在的鍵及其對應(yīng)的最大值。對此,請參考如下示例:
from collections import Counter cnt = Counter('Hello') cnt1 = Counter('World') print(cnt) print(cnt1) print(cnt | cnt1)
執(zhí)行效果
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1, 'W': 1, 'r': 1, 'd': 1})
交集運(yùn)算
Counter 對象之間的交集運(yùn)算是指兩個(gè) Counter 對象按照鍵的交集進(jìn)行運(yùn)算,返回的結(jié)果是一個(gè)新的 Counter 對象,其中包含的鍵和值均為 原始 Counter 對象中共同擁有的鍵及其對應(yīng)的最小值。對此,請參考如下示例:
from collections import Counter cnt = Counter('Hello') cnt1 = Counter('World') print(cnt) print(cnt1) print(cnt & cnt1)
執(zhí)行效果
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 1, 'o': 1})
單目運(yùn)算
單目運(yùn)算指的是表達(dá)式中存在單目運(yùn)算符的運(yùn)算操作。存在兩種單目運(yùn)算符,即單目減法運(yùn)算符與單目加法運(yùn)算符。無論是單目減法運(yùn)算符還是單目加法運(yùn)算符,它們的操作對象均為 Counter 對象中的計(jì)數(shù)值。
在對 Counter 對象進(jìn)行單目運(yùn)算后,將返回一個(gè)由大于零的計(jì)數(shù)值相關(guān)的鍵值對組成的 Counter 對象。對此,請參考如下示例:
from collections import Counter cnt = Counter({'a': 4, 'b': 3, 'd': 0, 'c': -5}) print(+cnt) print(-cnt)
執(zhí)行效果
Counter({'a': 4, 'b': 3})
Counter({'c': 5})
Counter 對象間的比較
從 Python 3.10 版本開始,Counter 對象間開始支持常見的比較運(yùn)算符,這些運(yùn)算符有:
<
<=
>
>=
==
!=
這里以 > 及 == 為例進(jìn)行講解。
>
當(dāng) > 的左側(cè)的 Counter 對象的鍵對應(yīng)的計(jì)數(shù)值均大于該符號(hào)右側(cè)的 Counter 對象中相同的鍵(對于 Counter 中不存在的鍵,其計(jì)數(shù)值為零)對應(yīng)的計(jì)數(shù)值時(shí),比較結(jié)果為 True。否則為 False。對此,請參考如下示例:
from collections import Counter cnt = Counter({'a': 4, 'b': 3, 'd': 7, 'c': 5}) cnt1 = Counter({'c': 3, 'd': 2, 'b': 6, 'a': 4}) cnt2 = Counter({'c': 4, 'd': 6, 'b': 2, 'a': 3}) print(cnt > cnt1) print(cnt > cnt2)
執(zhí)行效果
False
True
==
當(dāng) == 的左側(cè)的 Counter 對象的鍵對應(yīng)的計(jì)數(shù)值均等于該符號(hào)右側(cè)的 Counter 對象中相同的鍵(對于 Counter 中不存在的鍵,其計(jì)數(shù)值為零)對應(yīng)的計(jì)數(shù)值時(shí),比較結(jié)果為 True。否則為 False。對此,請參考如下示例:
from collections import Counter cnt = Counter({'a': 3, 'b': 2, 'd': 6, 'c': 4}) cnt1 = Counter({'c': 3, 'd': 2, 'b': 6, 'a': 4}) cnt2 = Counter({'c': 4, 'd': 6, 'b': 2, 'a': 3}) print(cnt == cnt1) print(cnt == cnt2)
執(zhí)行效果
False
True
The above is the detailed content of How to use the Counter module in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

User voice input is captured and sent to the PHP backend through the MediaRecorder API of the front-end JavaScript; 2. PHP saves the audio as a temporary file and calls STTAPI (such as Google or Baidu voice recognition) to convert it into text; 3. PHP sends the text to an AI service (such as OpenAIGPT) to obtain intelligent reply; 4. PHP then calls TTSAPI (such as Baidu or Google voice synthesis) to convert the reply to a voice file; 5. PHP streams the voice file back to the front-end to play, completing interaction. The entire process is dominated by PHP to ensure seamless connection between all links.

To realize text error correction and syntax optimization with AI, you need to follow the following steps: 1. Select a suitable AI model or API, such as Baidu, Tencent API or open source NLP library; 2. Call the API through PHP's curl or Guzzle and process the return results; 3. Display error correction information in the application and allow users to choose whether to adopt it; 4. Use php-l and PHP_CodeSniffer for syntax detection and code optimization; 5. Continuously collect feedback and update the model or rules to improve the effect. When choosing AIAPI, focus on evaluating accuracy, response speed, price and support for PHP. Code optimization should follow PSR specifications, use cache reasonably, avoid circular queries, review code regularly, and use X

When choosing a suitable PHP framework, you need to consider comprehensively according to project needs: Laravel is suitable for rapid development and provides EloquentORM and Blade template engines, which are convenient for database operation and dynamic form rendering; Symfony is more flexible and suitable for complex systems; CodeIgniter is lightweight and suitable for simple applications with high performance requirements. 2. To ensure the accuracy of AI models, we need to start with high-quality data training, reasonable selection of evaluation indicators (such as accuracy, recall, F1 value), regular performance evaluation and model tuning, and ensure code quality through unit testing and integration testing, while continuously monitoring the input data to prevent data drift. 3. Many measures are required to protect user privacy: encrypt and store sensitive data (such as AES

Use Seaborn's jointplot to quickly visualize the relationship and distribution between two variables; 2. The basic scatter plot is implemented by sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter"), the center is a scatter plot, and the histogram is displayed on the upper and lower and right sides; 3. Add regression lines and density information to a kind="reg", and combine marginal_kws to set the edge plot style; 4. When the data volume is large, it is recommended to use "hex"

To integrate AI sentiment computing technology into PHP applications, the core is to use cloud services AIAPI (such as Google, AWS, and Azure) for sentiment analysis, send text through HTTP requests and parse returned JSON results, and store emotional data into the database, thereby realizing automated processing and data insights of user feedback. The specific steps include: 1. Select a suitable AI sentiment analysis API, considering accuracy, cost, language support and integration complexity; 2. Use Guzzle or curl to send requests, store sentiment scores, labels, and intensity information; 3. Build a visual dashboard to support priority sorting, trend analysis, product iteration direction and user segmentation; 4. Respond to technical challenges, such as API call restrictions and numbers

The core idea of PHP combining AI for video content analysis is to let PHP serve as the backend "glue", first upload video to cloud storage, and then call AI services (such as Google CloudVideoAI, etc.) for asynchronous analysis; 2. PHP parses the JSON results, extract people, objects, scenes, voice and other information to generate intelligent tags and store them in the database; 3. The advantage is to use PHP's mature web ecosystem to quickly integrate AI capabilities, which is suitable for projects with existing PHP systems to efficiently implement; 4. Common challenges include large file processing (directly transmitted to cloud storage with pre-signed URLs), asynchronous tasks (introducing message queues), cost control (on-demand analysis, budget monitoring) and result optimization (label standardization); 5. Smart tags significantly improve visual

The core of PHP's development of AI text summary is to call external AI service APIs (such as OpenAI, HuggingFace) as a coordinator to realize text preprocessing, API requests, response analysis and result display; 2. The limitation is that the computing performance is weak and the AI ecosystem is weak. The response strategy is to leverage APIs, service decoupling and asynchronous processing; 3. Model selection needs to weigh summary quality, cost, delay, concurrency, data privacy, and abstract models such as GPT or BART/T5 are recommended; 4. Performance optimization includes cache, asynchronous queues, batch processing and nearby area selection. Error processing needs to cover current limit retry, network timeout, key security, input verification and logging to ensure the stable and efficient operation of the system.

String lists can be merged with join() method, such as ''.join(words) to get "HelloworldfromPython"; 2. Number lists must be converted to strings with map(str, numbers) or [str(x)forxinnumbers] before joining; 3. Any type list can be directly converted to strings with brackets and quotes, suitable for debugging; 4. Custom formats can be implemented by generator expressions combined with join(), such as '|'.join(f"[{item}]"foriteminitems) output"[a]|[
