AG-Grid is a powerful JavaScript data grid library, ideal for building dynamic, high-performance tables with features like sorting, filtering, and pagination. In this article, we’ll create an API in Go to support AG-Grid, enabling efficient server-side data operations, including filtering, sorting, and pagination. By integrating AG-Grid with Go API, we’ll develop a robust solution that ensures smooth performance, even when working with large datasets.
Prerequisites
- Go 1.21
- MySQL
Setup project
Setting up the Go project dependencies.
go mod init app go get github.com/gin-gonic/gin go get gorm.io/gorm go get gorm.io/driver/mysql go get github.com/joho/godotenv
Create a testing database named "example" and run the database.sql file to import the table and data.
Project structure
├─ .env ├─ main.go ├─ config │ └─ db.go ├─ controllers │ └─ product_controller.go ├─ models │ └─ product.go ├─ public │ └─ index.html └─ router └─ router.go
Project files
.env
This file contains the database connection information.
DB_HOST=localhost DB_PORT=3306 DB_DATABASE=example DB_USER=root DB_PASSWORD=
db.go
This file sets up the database connection using GORM. It declares a global variable DB to hold the database connection instance to use later in our application.
package config import ( "fmt" "os" "github.com/joho/godotenv" "gorm.io/driver/mysql" "gorm.io/gorm" "gorm.io/gorm/schema" ) var DB *gorm.DB func SetupDatabase() { godotenv.Load() connection := fmt.Sprintf("%s:%s@tcp(%s:%s)/%s?charset=utf8mb4&parseTime=true", os.Getenv("DB_USER"), os.Getenv("DB_PASSWORD"), os.Getenv("DB_HOST"), os.Getenv("DB_PORT"), os.Getenv("DB_DATABASE")) db, _ := gorm.Open(mysql.Open(connection), &gorm.Config{NamingStrategy: schema.NamingStrategy{SingularTable: true}}) DB = db }
router.go
This file sets up routing for a Gin web application. It initializes a router for a DataTables API and serves a static index.html file at the root URL.
package router import ( "app/controllers" "github.com/gin-gonic/gin" ) func SetupRouter() { productController := controllers.ProductController{} router := gin.Default() router.StaticFile("/", "./public/index.html") router.GET("/api/products", productController.Index) router.Run() }
product.go
This file defines the Product model for the application.
package models type Product struct { Id int Name string Price float64 }
product_controller.go
This file defines a function to handle incoming requests and return the DataTables data.
package controllers import ( "app/config" "app/models" "net/http" "strconv" "github.com/gin-gonic/gin" ) type ProductController struct { } func (con *ProductController) Index(c *gin.Context) { size, _ := strconv.Atoi(c.DefaultQuery("length", "10")) start, _ := strconv.Atoi(c.Query("start")) order := "id" if c.Query("order[0][column]") != "" { order = c.Query("columns[" + c.Query("order[0][column]") + "][data]") } direction := c.DefaultQuery("order[0][dir]", "asc") var products []models.Product query := config.DB.Model(&products) var recordsTotal, recordsFiltered int64 query.Count(&recordsTotal) search := c.Query("search[value]") if search != "" { search = "%" + search + "%" query.Where("name like ?", search) } query.Count(&recordsFiltered) query.Order(order + " " + direction). Offset(start). Limit(size). Find(&products) c.JSON(http.StatusOK, gin.H{"draw": c.Query("draw"), "recordsTotal": recordsTotal, "recordsFiltered": recordsFiltered, "data": products}) }
The product_controller.go file defines a controller for managing product-related API requests in a Go application using the Gin framework. It features an Index method that retrieves a paginated list of products based on query parameters for pagination, sorting, and searching. The method extracts parameters for pagination, constructs a query to fetch products from the database, and applies filtering if a search term is provided. After counting the total matching products, it orders and limits the results before returning a JSON response containing the product data and total count, facilitating integration with frontend applications.
main.go
This file is the main entry point of our application. It will create and setting up the Gin web application.
package main import ( "app/config" "app/router" ) func main() { config.SetupDatabase() router.SetupRouter() }
index.html
<!DOCTYPE html> <head> <script src="https://cdn.jsdelivr.net/npm/ag-grid-community/dist/ag-grid-community.min.js"></script> </head> <body> <div> <p>The index.html file sets up a web page that uses the AG-Grid library to display a dynamic data grid for products. It includes a grid styled with the AG-Grid theme and a JavaScript section that constructs query parameters for pagination, sorting, and filtering. The grid is configured with columns for ID, Name, and Price, and it fetches product data from an API endpoint based on user interactions. Upon loading, the grid is initialized, allowing users to view and manipulate the product list effectively.</p> <h2> Run project </h2> <pre class="brush:php;toolbar:false">go run main.go
Open the web browser and goto http://localhost:8080
You will find this test page.
Testing
Page size test
Change page size by selecting 50 from the "Page Size" drop-down. You will get 50 records per page, and the last page will change from 5 to 2.
Sorting test
Click on the header of the first column. You will see that the id column will be sorted in descending order.
Search test
Enter "no" in the search text-box of the "Name" column, and you will see the filtered result data.
Conclusion
In conclusion, we’ve effectively integrated AG-Grid with a Go API to create a robust and efficient data grid solution. By utilizing Go's backend capabilities, we enabled AG-Grid to handle server-side filtering, sorting, and pagination, ensuring smooth performance even with large datasets. This integration not only optimizes data management but also enhances the user experience with dynamic, responsive tables on the frontend. With AG-Grid and Go working in harmony, we’ve built a scalable and high-performance grid system that is well-suited for real-world applications.
Source code: https://github.com/stackpuz/Example-AG-Grid-Go
Create a CRUD Web App in Minutes: https://stackpuz.com
The above is the detailed content of Create an API for AG-Grid with Go. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Golangofferssuperiorperformance,nativeconcurrencyviagoroutines,andefficientresourceusage,makingitidealforhigh-traffic,low-latencyAPIs;2.Python,whileslowerduetointerpretationandtheGIL,provideseasierdevelopment,arichecosystem,andisbettersuitedforI/O-bo

Golang is mainly used for back-end development, but it can also play an indirect role in the front-end field. Its design goals focus on high-performance, concurrent processing and system-level programming, and are suitable for building back-end applications such as API servers, microservices, distributed systems, database operations and CLI tools. Although Golang is not the mainstream language for web front-end, it can be compiled into JavaScript through GopherJS, run on WebAssembly through TinyGo, or generate HTML pages with a template engine to participate in front-end development. However, modern front-end development still needs to rely on JavaScript/TypeScript and its ecosystem. Therefore, Golang is more suitable for the technology stack selection with high-performance backend as the core.

The key to installing Go is to select the correct version, configure environment variables, and verify the installation. 1. Go to the official website to download the installation package of the corresponding system. Windows uses .msi files, macOS uses .pkg files, Linux uses .tar.gz files and unzip them to /usr/local directory; 2. Configure environment variables, edit ~/.bashrc or ~/.zshrc in Linux/macOS to add PATH and GOPATH, and Windows set PATH to Go in the system properties; 3. Use the government command to verify the installation, and run the test program hello.go to confirm that the compilation and execution are normal. PATH settings and loops throughout the process

To build a GraphQLAPI in Go, it is recommended to use the gqlgen library to improve development efficiency. 1. First select the appropriate library, such as gqlgen, which supports automatic code generation based on schema; 2. Then define GraphQLschema, describe the API structure and query portal, such as defining Post types and query methods; 3. Then initialize the project and generate basic code to implement business logic in resolver; 4. Finally, connect GraphQLhandler to HTTPserver and test the API through the built-in Playground. Notes include field naming specifications, error handling, performance optimization and security settings to ensure project maintenance

Golang usually consumes less CPU and memory than Python when building web services. 1. Golang's goroutine model is efficient in scheduling, has strong concurrent request processing capabilities, and has lower CPU usage; 2. Go is compiled into native code, does not rely on virtual machines during runtime, and has smaller memory usage; 3. Python has greater CPU and memory overhead in concurrent scenarios due to GIL and interpretation execution mechanism; 4. Although Python has high development efficiency and rich ecosystem, it consumes a high resource, which is suitable for scenarios with low concurrency requirements.

sync.WaitGroup is used to wait for a group of goroutines to complete the task. Its core is to work together through three methods: Add, Done, and Wait. 1.Add(n) Set the number of goroutines to wait; 2.Done() is called at the end of each goroutine, and the count is reduced by one; 3.Wait() blocks the main coroutine until all tasks are completed. When using it, please note: Add should be called outside the goroutine, avoid duplicate Wait, and be sure to ensure that Don is called. It is recommended to use it with defer. It is common in concurrent crawling of web pages, batch data processing and other scenarios, and can effectively control the concurrency process.

Using Go's embed package can easily embed static resources into binary, suitable for web services to package HTML, CSS, pictures and other files. 1. Declare the embedded resource to add //go:embed comment before the variable, such as embedding a single file hello.txt; 2. It can be embedded in the entire directory such as static/*, and realize multi-file packaging through embed.FS; 3. It is recommended to switch the disk loading mode through buildtag or environment variables to improve efficiency; 4. Pay attention to path accuracy, file size limitations and read-only characteristics of embedded resources. Rational use of embed can simplify deployment and optimize project structure.

WhenchoosingbetweenGolangandPythonforcodereadabilityandmaintainability,thedecisionhingesonteampriorities.1.Golangoffersstrictconsistencywithminimal,opinionatedsyntaxandbuilt-intoolinglikegofmt,ensuringuniformcodestyleandearlyerrordetection.2.Pythonpr
