Abstract Factory is a creational design pattern that lets you create related objects without specifying their concrete classes.
Problem Statement
Imagine you are developing a GUI toolkit that should support multiple look-and-feel standards (e.g., Windows, macOS, Linux). Each look-and-feel standard requires a different set of UI components such as buttons, checkboxes, and scrollbars.
Without the Abstract Factory pattern, you would have to write a lot of conditional code to handle the creation of these components based on the current look-and-feel standard. This approach is not scalable and makes the codebase difficult to maintain and extend.
By using the Abstract Factory pattern, you can create an interface for creating families of related objects (e.g., buttons, checkboxes, scrollbars) and implement this interface for each look-and-feel standard. This way, the client code can work with any look-and-feel standard without knowing the specifics of how the components are created.
Real-World Example
Consider a furniture factory that produces chairs and tables in different styles such as classic and modern.
Each style requires a different set of components (e.g., legs, backrest, armrests) and materials (e.g., wood, metal, plastic).
Implementation
- Run the example by running go run abstract-factory/main.go.
package main import "fmt" // Abstract Factory type FurnitureFactory interface { MakeChair() Chair MakeTable() Table } func NewFurnitureFactory(style string) (FurnitureFactory, error) { if style == "classic" { return &Classic{}, nil } if style == "modern" { return &Modern{}, nil } return nil, fmt.Errorf("Style %s is not supported", style) } type Chair struct { Name string Material string } type Table struct { Name string Material string } // Concrete Classic Factory type Classic struct{} func (a *Classic) MakeChair() Chair { return Chair{ Name: "Classic Chair", Material: "Wood", } } func (a *Classic) MakeTable() Table { return Table{ Name: "Classic Table", Material: "Wood", } } // Concrete Modern Factory type Modern struct{} func (n *Modern) MakeChair() Chair { return Chair{ Name: "Modern Chair", Material: "Plastic", } } func (n *Modern) MakeTable() Table { return Table{ Name: "Modern Table", Material: "Plastic", } } func main() { factory, _ := NewFurnitureFactory("classic") chair := factory.MakeChair() table := factory.MakeTable() fmt.Printf("Chair: %s\n", chair.Name) fmt.Printf("Table: %s\n", table.Name) factory, _ = NewFurnitureFactory("modern") chair = factory.MakeChair() table = factory.MakeTable() fmt.Printf("Chair: %s\n", chair.Name) fmt.Printf("Table: %s\n", table.Name) }
Explanation
This code demonstrates the Abstract Factory pattern by creating furniture (chairs and tables) in different styles (classic and modern). It defines an interface for creating families of related objects and concrete implementations for each style, allowing easy scalability and maintenance.
The above is the detailed content of Go Design Patterns #Abstract Factory. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Golangofferssuperiorperformance,nativeconcurrencyviagoroutines,andefficientresourceusage,makingitidealforhigh-traffic,low-latencyAPIs;2.Python,whileslowerduetointerpretationandtheGIL,provideseasierdevelopment,arichecosystem,andisbettersuitedforI/O-bo

Golang is mainly used for back-end development, but it can also play an indirect role in the front-end field. Its design goals focus on high-performance, concurrent processing and system-level programming, and are suitable for building back-end applications such as API servers, microservices, distributed systems, database operations and CLI tools. Although Golang is not the mainstream language for web front-end, it can be compiled into JavaScript through GopherJS, run on WebAssembly through TinyGo, or generate HTML pages with a template engine to participate in front-end development. However, modern front-end development still needs to rely on JavaScript/TypeScript and its ecosystem. Therefore, Golang is more suitable for the technology stack selection with high-performance backend as the core.

To build a GraphQLAPI in Go, it is recommended to use the gqlgen library to improve development efficiency. 1. First select the appropriate library, such as gqlgen, which supports automatic code generation based on schema; 2. Then define GraphQLschema, describe the API structure and query portal, such as defining Post types and query methods; 3. Then initialize the project and generate basic code to implement business logic in resolver; 4. Finally, connect GraphQLhandler to HTTPserver and test the API through the built-in Playground. Notes include field naming specifications, error handling, performance optimization and security settings to ensure project maintenance

The key to installing Go is to select the correct version, configure environment variables, and verify the installation. 1. Go to the official website to download the installation package of the corresponding system. Windows uses .msi files, macOS uses .pkg files, Linux uses .tar.gz files and unzip them to /usr/local directory; 2. Configure environment variables, edit ~/.bashrc or ~/.zshrc in Linux/macOS to add PATH and GOPATH, and Windows set PATH to Go in the system properties; 3. Use the government command to verify the installation, and run the test program hello.go to confirm that the compilation and execution are normal. PATH settings and loops throughout the process

Golang usually consumes less CPU and memory than Python when building web services. 1. Golang's goroutine model is efficient in scheduling, has strong concurrent request processing capabilities, and has lower CPU usage; 2. Go is compiled into native code, does not rely on virtual machines during runtime, and has smaller memory usage; 3. Python has greater CPU and memory overhead in concurrent scenarios due to GIL and interpretation execution mechanism; 4. Although Python has high development efficiency and rich ecosystem, it consumes a high resource, which is suitable for scenarios with low concurrency requirements.

sync.WaitGroup is used to wait for a group of goroutines to complete the task. Its core is to work together through three methods: Add, Done, and Wait. 1.Add(n) Set the number of goroutines to wait; 2.Done() is called at the end of each goroutine, and the count is reduced by one; 3.Wait() blocks the main coroutine until all tasks are completed. When using it, please note: Add should be called outside the goroutine, avoid duplicate Wait, and be sure to ensure that Don is called. It is recommended to use it with defer. It is common in concurrent crawling of web pages, batch data processing and other scenarios, and can effectively control the concurrency process.

Using Go's embed package can easily embed static resources into binary, suitable for web services to package HTML, CSS, pictures and other files. 1. Declare the embedded resource to add //go:embed comment before the variable, such as embedding a single file hello.txt; 2. It can be embedded in the entire directory such as static/*, and realize multi-file packaging through embed.FS; 3. It is recommended to switch the disk loading mode through buildtag or environment variables to improve efficiency; 4. Pay attention to path accuracy, file size limitations and read-only characteristics of embedded resources. Rational use of embed can simplify deployment and optimize project structure.

WhenchoosingbetweenGolangandPythonforcodereadabilityandmaintainability,thedecisionhingesonteampriorities.1.Golangoffersstrictconsistencywithminimal,opinionatedsyntaxandbuilt-intoolinglikegofmt,ensuringuniformcodestyleandearlyerrordetection.2.Pythonpr
