亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

目錄
Loading and Inspecting Your Data
Cleaning and Preparing the Data
Filtering, Sorting, and Transforming Data
Visualizing Insights Quickly
首頁(yè) 後端開(kāi)發(fā) Python教學(xué) 使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析

使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析

Jul 05, 2025 am 02:27 AM

Python的Pandas庫(kù)是數(shù)據(jù)分析的強(qiáng)大工具,其核心結(jié)構(gòu)為DataFrame。 1.首先加載數(shù)據(jù)到DataFrame並檢查結(jié)構(gòu);2.清理數(shù)據(jù),處理缺失值和修正數(shù)據(jù)類型;3.過(guò)濾、排序及轉(zhuǎn)換數(shù)據(jù)以提取信息;4.通過(guò)分組聚合分析趨勢(shì);5.利用可視化庫(kù)快速生成圖表。這些步驟構(gòu)成使用Pandas進(jìn)行數(shù)據(jù)分析的基礎(chǔ)流程。

Performing Data Analysis Using Python Pandas DataFrames

When it comes to data analysis, Python's Pandas library is one of the most powerful tools available. At the heart of Pandas lies the DataFrame — a two-dimensional, size-mutable, and potentially heterogeneous tabular data structure. With DataFrames, you can load, clean, transform, and analyze data efficiently. Here's how to get started with performing data analysis using Pandas DataFrames.

Performing Data Analysis Using Python Pandas DataFrames

Loading and Inspecting Your Data

Before diving into analysis, you need to load your data into a DataFrame. Most commonly, this is done from CSV files, Excel sheets, or databases.

Performing Data Analysis Using Python Pandas DataFrames
 import pandas as pd
df = pd.read_csv('data.csv')

Once loaded, take a quick look at the first few rows:

 print(df.head())

This helps you understand the structure — what columns are present, what kind of data they contain, and whether there are obvious issues like missing values or incorrect formats.

Performing Data Analysis Using Python Pandas DataFrames

Useful inspection methods:

  • df.info() – gives a summary including data types and non-null counts
  • df.describe() – shows basic statistical info for numerical columns
  • df.shape – tells you how many rows and columns you have

These help you assess data quality and decide on next steps like cleaning or filtering.


Cleaning and Preparing the Data

Real-world datasets often come with imperfections. Missing values, inconsistent formatting, or incorrect entries can skew your results.

To check for missing values:

 print(df.isnull().sum())

Depending on the context, you can either drop rows/columns with missing data or fill them in:

  • df.dropna() – removes rows with missing values
  • df.fillna(0) – fills missing values with 0 (or any other value)
  • df.interpolate() – fills missing values using interpolation

Also, ensure that data types are correct. For example, a column meant to be numeric might be read as strings due to extra characters:

 df['column_name'] = pd.to_numeric(df['column_name'], errors='coerce')

Renaming columns for clarity or consistency can also improve readability:

 df.rename(columns={'old_name': 'new_name'}, inplace=True)

Filtering, Sorting, and Transforming Data

Once your data is clean, you can start slicing and dicing it based on your analysis needs.

Filtering lets you extract subsets of data:

 filtered_data = df[df['sales'] > 1000]

You can also filter using multiple conditions:

 df[(df['category'] == 'Electronics') & (df['sales'] > 500)]

Sorting helps organize data:

 sorted_df = df.sort_values(by='sales', ascending=False)

For transformations , consider creating new calculated columns:

 df['profit_margin'] = df['profit'] / df['revenue']

Grouping data by categories and aggregating values is another common step:

 grouped = df.groupby('region')['sales'].sum()

These operations make it easier to spot trends and patterns.


Visualizing Insights Quickly

While not part of Pandas directly, integration with libraries like Matplotlib or Seaborn makes visual analysis straightforward.

A simple histogram:

 df['sales'].plot(kind='hist', bins=20)

Or a bar chart showing total sales per region:

 df.groupby('region')['sales'].sum().plot(kind='bar')

Visualization helps turn raw numbers into actionable insights.


Getting comfortable with these basic techniques will give you a solid foundation for performing data analysis using Pandas DataFrames. The key is to practice with real data and gradually build up your toolkit. There's always more to learn, but these steps cover most day-to-day tasks.

以上是使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析的詳細(xì)內(nèi)容。更多資訊請(qǐng)關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願(yuàn)投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請(qǐng)聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動(dòng)的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強(qiáng)大的PHP整合開(kāi)發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺(jué)化網(wǎng)頁(yè)開(kāi)發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級(jí)程式碼編輯軟體(SublimeText3)

熱門話題

Laravel 教程
1597
29
PHP教程
1488
72
Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實(shí)現(xiàn)”,允許統(tǒng)一處理不同類型的對(duì)象。 1.多態(tài)通過(guò)方法重寫實(shí)現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實(shí)現(xiàn)。 2.多態(tài)的實(shí)際用途包括簡(jiǎn)化代碼結(jié)構(gòu)、增強(qiáng)可擴(kuò)展性,例如圖形繪製程序中統(tǒng)一調(diào)用draw()方法,或遊戲開(kāi)發(fā)中處理不同角色的共同行為。 3.Python實(shí)現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對(duì)象實(shí)現(xiàn)相同方法即可,這稱為“鴨子類型”。 4.注意事項(xiàng)包括保持方

解釋Python發(fā)電機(jī)和迭代器。 解釋Python發(fā)電機(jī)和迭代器。 Jul 05, 2025 am 02:55 AM

迭代器是實(shí)現(xiàn)__iter__()和__next__()方法的對(duì)象,生成器是簡(jiǎn)化版的迭代器,通過(guò)yield關(guān)鍵字自動(dòng)實(shí)現(xiàn)這些方法。 1.迭代器每次調(diào)用next()返回一個(gè)元素,無(wú)更多元素時(shí)拋出StopIteration異常。 2.生成器通過(guò)函數(shù)定義,使用yield按需生成數(shù)據(jù),節(jié)省內(nèi)存且支持無(wú)限序列。 3.處理已有集合時(shí)用迭代器,動(dòng)態(tài)生成大數(shù)據(jù)或需惰性求值時(shí)用生成器,如讀取大文件時(shí)逐行加載。注意:列表等可迭代對(duì)像不是迭代器,迭代器到盡頭後需重新創(chuàng)建,生成器只能遍歷一次。

如何處理Python中的API身份驗(yàn)證 如何處理Python中的API身份驗(yàn)證 Jul 13, 2025 am 02:22 AM

處理API認(rèn)證的關(guān)鍵在於理解並正確使用認(rèn)證方式。 1.APIKey是最簡(jiǎn)單的認(rèn)證方式,通常放在請(qǐng)求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進(jìn)行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過(guò)client_id和client_secret獲取Token,再在請(qǐng)求頭中帶上BearerToken;4.為應(yīng)對(duì)Token過(guò)期,可封裝Token管理類自動(dòng)刷新Token;總之,根據(jù)文檔選擇合適方式,並安全存儲(chǔ)密鑰信息是關(guān)鍵。

如何一次迭代兩個(gè)列表 如何一次迭代兩個(gè)列表 Jul 09, 2025 am 01:13 AM

在Python中同時(shí)遍歷兩個(gè)列表的常用方法是使用zip()函數(shù),它會(huì)按順序配對(duì)多個(gè)列表並以最短為準(zhǔn);若列表長(zhǎng)度不一致,可使用itertools.zip_longest()以最長(zhǎng)為準(zhǔn)並填充缺失值;結(jié)合enumerate()可同時(shí)獲取索引。 1.zip()簡(jiǎn)潔實(shí)用,適合成對(duì)數(shù)據(jù)迭代;2.zip_longest()處理不一致長(zhǎng)度時(shí)可填充默認(rèn)值;3.enumerate(zip())可在遍歷時(shí)獲取索引,滿足多種複雜場(chǎng)景需求。

什麼是Python型提示? 什麼是Python型提示? Jul 07, 2025 am 02:55 AM

typeHintsInpyThonsolverbromblemboyofambiguityandPotentialBugSindyNamalytyCodeByallowingDevelopsosteSpecefectifyExpectedTypes.theyenhancereadability,enablellybugdetection,andimprovetool.typehintsupport.typehintsareadsareadsareadsareadsareadsareadsareadsareadsareaddedusidocolon(

什麼是Python迭代器? 什麼是Python迭代器? Jul 08, 2025 am 02:56 AM

Inpython,IteratorSareObjectSthallowloopingThroughCollectionsByImplementing_iter __()和__next __()。 1)iteratorsWiaTheIteratorProtocol,使用__ITER __()toreTurnterateratoratoranteratoratoranteratoratorAnterAnteratoratorant antheittheext__()

解釋Python斷言。 解釋Python斷言。 Jul 07, 2025 am 12:14 AM

Assert是Python用於調(diào)試的斷言工具,當(dāng)條件不滿足時(shí)拋出AssertionError。其語(yǔ)法為assert條件加可選錯(cuò)誤信息,適用於內(nèi)部邏輯驗(yàn)證如參數(shù)檢查、狀態(tài)確認(rèn)等,但不能用於安全或用戶輸入檢查,且應(yīng)配合清晰提示信息使用,僅限開(kāi)發(fā)階段輔助調(diào)試而非替代異常處理。

如何用Python測(cè)試API 如何用Python測(cè)試API Jul 12, 2025 am 02:47 AM

要測(cè)試API需使用Python的Requests庫(kù),步驟為安裝庫(kù)、發(fā)送請(qǐng)求、驗(yàn)證響應(yīng)、設(shè)置超時(shí)與重試。首先通過(guò)pipinstallrequests安裝庫(kù);接著用requests.get()或requests.post()等方法發(fā)送GET或POST請(qǐng)求;然後檢查response.status_code和response.json()確保返回結(jié)果符合預(yù)期;最後可添加timeout參數(shù)設(shè)置超時(shí)時(shí)間,並結(jié)合retrying庫(kù)實(shí)現(xiàn)自動(dòng)重試以增強(qiáng)穩(wěn)定性。

See all articles