亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

首頁 後端開發(fā) Python教學(xué) 建構(gòu)企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與最佳化

建構(gòu)企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與最佳化

Nov 23, 2024 pm 01:46 PM

Building Enterprise Agent Systems: Core Component Design and Optimization

介紹

建置企業(yè)級(jí)人工智慧代理需要仔細(xì)考慮元件設(shè)計(jì)、系統(tǒng)架構(gòu)和工程實(shí)務(wù)。本文探討了建構(gòu)健壯且可擴(kuò)展的代理系統(tǒng)的關(guān)鍵元件和最佳實(shí)踐。

1. 提示範(fàn)本工程

1.1 模板設(shè)計(jì)模式

from typing import Protocol, Dict
from jinja2 import Template

class PromptTemplate(Protocol):
    def render(self, **kwargs) -> str:
        pass

class JinjaPromptTemplate:
    def __init__(self, template_string: str):
        self.template = Template(template_string)

    def render(self, **kwargs) -> str:
        return self.template.render(**kwargs)

class PromptLibrary:
    def __init__(self):
        self.templates: Dict[str, PromptTemplate] = {}

    def register_template(self, name: str, template: PromptTemplate):
        self.templates[name] = template

    def get_template(self, name: str) -> PromptTemplate:
        return self.templates[name]

1.2 版本控制與測試

class PromptVersion:
    def __init__(self, version: str, template: str, metadata: dict):
        self.version = version
        self.template = template
        self.metadata = metadata
        self.test_cases = []

    def add_test_case(self, inputs: dict, expected_output: str):
        self.test_cases.append((inputs, expected_output))

    def validate(self) -> bool:
        template = JinjaPromptTemplate(self.template)
        for inputs, expected in self.test_cases:
            result = template.render(**inputs)
            if not self._validate_output(result, expected):
                return False
        return True

2. 分層記憶體系統(tǒng)

2.1 記憶體架構(gòu)

from typing import Any, List
from datetime import datetime

class MemoryEntry:
    def __init__(self, content: Any, importance: float):
        self.content = content
        self.importance = importance
        self.timestamp = datetime.now()
        self.access_count = 0

class MemoryLayer:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.memories: List[MemoryEntry] = []

    def add(self, entry: MemoryEntry):
        if len(self.memories) >= self.capacity:
            self._evict()
        self.memories.append(entry)

    def _evict(self):
        # Implement memory eviction strategy
        self.memories.sort(key=lambda x: x.importance * x.access_count)
        self.memories.pop(0)

class HierarchicalMemory:
    def __init__(self):
        self.working_memory = MemoryLayer(capacity=5)
        self.short_term = MemoryLayer(capacity=50)
        self.long_term = MemoryLayer(capacity=1000)

    def store(self, content: Any, importance: float):
        entry = MemoryEntry(content, importance)

        if importance > 0.8:
            self.working_memory.add(entry)
        elif importance > 0.5:
            self.short_term.add(entry)
        else:
            self.long_term.add(entry)

2.2 內(nèi)存檢索和索引

from typing import List, Tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

class MemoryIndex:
    def __init__(self, embedding_model):
        self.embedding_model = embedding_model
        self.embeddings = []
        self.memories = []

    def add(self, memory: MemoryEntry):
        embedding = self.embedding_model.embed(memory.content)
        self.embeddings.append(embedding)
        self.memories.append(memory)

    def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]:
        query_embedding = self.embedding_model.embed(query)
        similarities = cosine_similarity(
            [query_embedding], 
            self.embeddings
        )[0]

        top_k_indices = np.argsort(similarities)[-k:]

        return [
            (self.memories[i], similarities[i]) 
            for i in top_k_indices
        ]

3. 可觀察的推理鏈

3.1 鏈結(jié)構(gòu)

from typing import List, Optional
from dataclasses import dataclass
import uuid

@dataclass
class ThoughtNode:
    content: str
    confidence: float
    supporting_evidence: List[str]

class ReasoningChain:
    def __init__(self):
        self.chain_id = str(uuid.uuid4())
        self.nodes: List[ThoughtNode] = []
        self.metadata = {}

    def add_thought(self, thought: ThoughtNode):
        self.nodes.append(thought)

    def get_path(self) -> List[str]:
        return [node.content for node in self.nodes]

    def get_confidence(self) -> float:
        if not self.nodes:
            return 0.0
        return sum(n.confidence for n in self.nodes) / len(self.nodes)

3.2 鏈條監(jiān)測與分析

import logging
from opentelemetry import trace
from prometheus_client import Histogram

reasoning_time = Histogram(
    'reasoning_chain_duration_seconds',
    'Time spent in reasoning chain'
)

class ChainMonitor:
    def __init__(self):
        self.tracer = trace.get_tracer(__name__)

    def monitor_chain(self, chain: ReasoningChain):
        with self.tracer.start_as_current_span("reasoning_chain") as span:
            span.set_attribute("chain_id", chain.chain_id)

            with reasoning_time.time():
                for node in chain.nodes:
                    with self.tracer.start_span("thought") as thought_span:
                        thought_span.set_attribute(
                            "confidence", 
                            node.confidence
                        )
                        logging.info(
                            f"Thought: {node.content} "
                            f"(confidence: {node.confidence})"
                        )

4. 元件解耦和復(fù)用

4.1 介面設(shè)計(jì)

from abc import ABC, abstractmethod
from typing import Generic, TypeVar

T = TypeVar('T')

class Component(ABC, Generic[T]):
    @abstractmethod
    def process(self, input_data: T) -> T:
        pass

class Pipeline:
    def __init__(self):
        self.components: List[Component] = []

    def add_component(self, component: Component):
        self.components.append(component)

    def process(self, input_data: Any) -> Any:
        result = input_data
        for component in self.components:
            result = component.process(result)
        return result

4.2 組件註冊

class ComponentRegistry:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
            cls._instance.components = {}
        return cls._instance

    def register(self, name: str, component: Component):
        self.components[name] = component

    def get(self, name: str) -> Optional[Component]:
        return self.components.get(name)

    def create_pipeline(self, component_names: List[str]) -> Pipeline:
        pipeline = Pipeline()
        for name in component_names:
            component = self.get(name)
            if component:
                pipeline.add_component(component)
        return pipeline

5. 效能監(jiān)控與最佳化

5.1 性能指標(biāo)

from dataclasses import dataclass
from typing import Dict
import time

@dataclass
class PerformanceMetrics:
    latency: float
    memory_usage: float
    token_count: int
    success_rate: float

class PerformanceMonitor:
    def __init__(self):
        self.metrics: Dict[str, List[PerformanceMetrics]] = {}

    def record_operation(
        self,
        operation_name: str,
        metrics: PerformanceMetrics
    ):
        if operation_name not in self.metrics:
            self.metrics[operation_name] = []
        self.metrics[operation_name].append(metrics)

    def get_average_metrics(
        self,
        operation_name: str
    ) -> Optional[PerformanceMetrics]:
        if operation_name not in self.metrics:
            return None

        metrics_list = self.metrics[operation_name]
        return PerformanceMetrics(
            latency=sum(m.latency for m in metrics_list) / len(metrics_list),
            memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),
            token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),
            success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list)
        )

5.2 優(yōu)化策略

class PerformanceOptimizer:
    def __init__(self, monitor: PerformanceMonitor):
        self.monitor = monitor
        self.thresholds = {
            'latency': 1.0,  # seconds
            'memory_usage': 512,  # MB
            'token_count': 1000,
            'success_rate': 0.95
        }

    def analyze_performance(self, operation_name: str) -> List[str]:
        metrics = self.monitor.get_average_metrics(operation_name)
        if not metrics:
            return []

        recommendations = []

        if metrics.latency > self.thresholds['latency']:
            recommendations.append(
                "Consider implementing caching or parallel processing"
            )

        if metrics.memory_usage > self.thresholds['memory_usage']:
            recommendations.append(
                "Optimize memory usage through batch processing"
            )

        if metrics.token_count > self.thresholds['token_count']:
            recommendations.append(
                "Implement prompt optimization to reduce token usage"
            )

        if metrics.success_rate < self.thresholds['success_rate']:
            recommendations.append(
                "Review error handling and implement retry mechanisms"
            )

        return recommendations

結(jié)論

建構(gòu)企業(yè)級(jí)Agent系統(tǒng)需要仔細(xì)注意:

  • 結(jié)構(gòu)化提示管理與版本控制
  • 高效率且可擴(kuò)充的記憶體系統(tǒng)
  • 可觀察、可追溯的推理過程
  • 模組化和可重複使用的元件設(shè)計(jì)
  • 全面的效能監(jiān)控與最佳化

以上是建構(gòu)企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與最佳化的詳細(xì)內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願(yuàn)投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動(dòng)的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強(qiáng)大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級(jí)程式碼編輯軟體(SublimeText3)

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實(shí)現(xiàn)”,允許統(tǒng)一處理不同類型的對(duì)象。 1.多態(tài)通過方法重寫實(shí)現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實(shí)現(xiàn)。 2.多態(tài)的實(shí)際用途包括簡化代碼結(jié)構(gòu)、增強(qiáng)可擴(kuò)展性,例如圖形繪製程序中統(tǒng)一調(diào)用draw()方法,或遊戲開發(fā)中處理不同角色的共同行為。 3.Python實(shí)現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對(duì)象實(shí)現(xiàn)相同方法即可,這稱為“鴨子類型”。 4.注意事項(xiàng)包括保持方

Python函數(shù)參數(shù)和參數(shù) Python函數(shù)參數(shù)和參數(shù) Jul 04, 2025 am 03:26 AM

參數(shù)(parameters)是定義函數(shù)時(shí)的佔(zhàn)位符,而傳參(arguments)是調(diào)用時(shí)傳入的具體值。 1.位置參數(shù)需按順序傳遞,順序錯(cuò)誤會(huì)導(dǎo)致結(jié)果錯(cuò)誤;2.關(guān)鍵字參數(shù)通過參數(shù)名指定,可改變順序且提高可讀性;3.默認(rèn)參數(shù)值在定義時(shí)賦值,避免重複代碼,但應(yīng)避免使用可變對(duì)像作為默認(rèn)值;4.args和*kwargs可處理不定數(shù)量的參數(shù),適用於通用接口或裝飾器,但應(yīng)謹(jǐn)慎使用以保持可讀性。

解釋Python發(fā)電機(jī)和迭代器。 解釋Python發(fā)電機(jī)和迭代器。 Jul 05, 2025 am 02:55 AM

迭代器是實(shí)現(xiàn)__iter__()和__next__()方法的對(duì)象,生成器是簡化版的迭代器,通過yield關(guān)鍵字自動(dòng)實(shí)現(xiàn)這些方法。 1.迭代器每次調(diào)用next()返回一個(gè)元素,無更多元素時(shí)拋出StopIteration異常。 2.生成器通過函數(shù)定義,使用yield按需生成數(shù)據(jù),節(jié)省內(nèi)存且支持無限序列。 3.處理已有集合時(shí)用迭代器,動(dòng)態(tài)生成大數(shù)據(jù)或需惰性求值時(shí)用生成器,如讀取大文件時(shí)逐行加載。注意:列表等可迭代對(duì)像不是迭代器,迭代器到盡頭後需重新創(chuàng)建,生成器只能遍歷一次。

python`@classmethod'裝飾師解釋了 python`@classmethod'裝飾師解釋了 Jul 04, 2025 am 03:26 AM

類方法是Python中通過@classmethod裝飾器定義的方法,其第一個(gè)參數(shù)為類本身(cls),用於訪問或修改類狀態(tài)。它可通過類或?qū)嵗{(diào)用,影響的是整個(gè)類而非特定實(shí)例;例如在Person類中,show_count()方法統(tǒng)計(jì)創(chuàng)建的對(duì)像數(shù)量;定義類方法時(shí)需使用@classmethod裝飾器並將首參命名為cls,如change_var(new_value)方法可修改類變量;類方法與實(shí)例方法(self參數(shù))、靜態(tài)方法(無自動(dòng)參數(shù))不同,適用於工廠方法、替代構(gòu)造函數(shù)及管理類變量等場景;常見用途包括從

如何處理Python中的API身份驗(yàn)證 如何處理Python中的API身份驗(yàn)證 Jul 13, 2025 am 02:22 AM

處理API認(rèn)證的關(guān)鍵在於理解並正確使用認(rèn)證方式。 1.APIKey是最簡單的認(rèn)證方式,通常放在請求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進(jìn)行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過client_id和client_secret獲取Token,再在請求頭中帶上BearerToken;4.為應(yīng)對(duì)Token過期,可封裝Token管理類自動(dòng)刷新Token;總之,根據(jù)文檔選擇合適方式,並安全存儲(chǔ)密鑰信息是關(guān)鍵。

什麼是python魔法方法或dunder方法? 什麼是python魔法方法或dunder方法? Jul 04, 2025 am 03:20 AM

Python的magicmethods(或稱dunder方法)是用於定義對(duì)象行為的特殊方法,它們以雙下劃線開頭和結(jié)尾。 1.它們使對(duì)象能夠響應(yīng)內(nèi)置操作,如加法、比較、字符串表示等;2.常見用例包括對(duì)像初始化與表示(__init__、__repr__、__str__)、算術(shù)運(yùn)算(__add__、__sub__、__mul__)及比較運(yùn)算(__eq__、__lt__);3.使用時(shí)應(yīng)確保其行為符合預(yù)期,例如__repr__應(yīng)返回可重構(gòu)對(duì)象的表達(dá)式,算術(shù)方法應(yīng)返回新實(shí)例;4.應(yīng)避免過度使用或以令人困惑的方

Python內(nèi)存管理如何工作? Python內(nèi)存管理如何工作? Jul 04, 2025 am 03:26 AM

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

python`@property`裝飾師 python`@property`裝飾師 Jul 04, 2025 am 03:28 AM

@property是Python中用於將方法偽裝成屬性的裝飾器,允許在訪問屬性時(shí)執(zhí)行邏輯判斷或動(dòng)態(tài)計(jì)算值。 1.它通過@property裝飾器定義getter方法,使外部像訪問屬性一樣調(diào)用方法;2.搭配.setter可控制賦值行為,如校驗(yàn)值合法性,不定義.setter則為只讀屬性;3.適用於屬性賦值校驗(yàn)、動(dòng)態(tài)生成屬性值、隱藏內(nèi)部實(shí)現(xiàn)細(xì)節(jié)等場景;4.使用時(shí)注意屬性名與私有變量名不同名,避免死循環(huán),適合輕量級(jí)操作;5.示例中Circle類限制radius非負(fù),Person類動(dòng)態(tài)生成full_name屬

See all articles