亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Rumah Peranti teknologi AI Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Aug 06, 2024 pm 07:34 PM
teori

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Editor |. KX

Retrosintesis ialah tugas kritikal dalam penemuan dadah dan sintesis organik, dan AI semakin digunakan untuk mempercepatkan proses.

Kaedah AI sedia ada mempunyai prestasi yang tidak memuaskan dan kepelbagaian terhad. Dalam amalan, tindak balas kimia sering menyebabkan perubahan molekul tempatan, dengan pertindihan yang besar antara bahan tindak balas dan produk.

Diilhamkan oleh ini, pasukan Hou Tingjun di Universiti Zhejiang mencadangkan untuk mentakrifkan semula ramalan retrosintetik satu langkah sebagai tugas penyuntingan rentetan molekul dan secara berulang memperhalusi rentetan molekul sasaran untuk menghasilkan sebatian prekursor. Dan model retrosintesis berasaskan edit EditRetro dicadangkan, yang boleh mencapai ramalan berkualiti tinggi dan pelbagai.

Eksperimen yang meluas menunjukkan bahawa model ini mencapai prestasi cemerlang pada set data penanda aras standard USPTO-50 K, dengan ketepatan 1 teratas 60.8%.

Hasilnya menunjukkan bahawa EditRetro mempamerkan keupayaan generalisasi dan keteguhan yang baik, menonjolkan potensinya dalam bidang perancangan sintesis kimia dipacu AI.

Penyelidikan berkaitan bertajuk "Ramalan retrosintesis dengan model penyuntingan rentetan berulang" telah diterbitkan dalam "Nature Communications" pada 30 Julai.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Pautan kertas: https://www.nature.com/articles/s41467-024-50617-1

Reka bentuk laluan sintesis molekul ialah tugas penting dalam sintesis organik, yang penting untuk bioperubatan dan Ia amat penting dalam pelbagai bidang seperti industri bahan.

Analisis retrosintetik ialah kaedah yang paling banyak digunakan untuk membangunkan laluan sintetik. Ia melibatkan penggunaan tindak balas yang mantap untuk menguraikan molekul secara berulang kepada prekursor yang lebih ringkas dan lebih mudah untuk disintesis.

Dalam beberapa tahun kebelakangan ini, retrosintesis dipacu AI telah memudahkan penerokaan molekul yang lebih kompleks, sekali gus mengurangkan masa dan usaha yang diperlukan untuk mereka bentuk eksperimen sintetik. Ramalan retrosintesis satu langkah ialah bahagian penting dalam perancangan retrosintesis Pada masa ini terdapat beberapa kaedah berasaskan pembelajaran mendalam dengan hasil yang cemerlang. Kaedah ini boleh dibahagikan secara kasar kepada tiga kategori: kaedah berasaskan templat, kaedah bebas templat dan kaedah berasaskan separa templat.

Di sini, penyelidik menumpukan pada ramalan retrosintetik tanpa templat. mencadangkan untuk mentakrifkan semula masalah sebagai tugas penyuntingan rentetan molekul dan mencadangkan EditRetro, model retrosintetik berasaskan penyuntingan yang boleh mencapai ramalan berkualiti tinggi dan pelbagai.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Ilustrasi: Gambar rajah skema kaedah EditRetro yang dicadangkan berdasarkan retrosintesis rentetan molekul. (Sumber: Kertas)

Konsep teras penyelidikan ini adalah untuk menghasilkan rentetan reaktan melalui proses penyuntingan berulang menggunakan operasi Levenshtein. Pendekatan ini mendapat inspirasi daripada kemajuan terkini dalam model penjanaan jujukan berasaskan suntingan. Khususnya, operasi daripada EDITOR, Transformer berasaskan penyuntingan yang direka untuk terjemahan mesin saraf, digunakan.

EditRetro Gambaran Keseluruhan

Model EditRetro mengandungi tiga operasi penyuntingan, iaitu penempatan semula jujukan, sisipan ruang letak dan sisipan penanda, untuk menghasilkan rentetan reaktan. Ia dilaksanakan oleh model Transformer, yang terdiri daripada pengekod dan tiga penyahkod, kedua-duanya terdiri daripada blok Transformer bertindan.

  • Penyahkod penempatan semula: Operasi penempatan semula termasuk operasi penyuntingan token asas seperti mengekalkan, memadam dan menyusun semula. Ia boleh dibandingkan dengan proses mengenal pasti pusat tindak balas, termasuk menyusun semula dan memadamkan atom atau kumpulan untuk mendapatkan synthon.
  • Penyahkod pemegang tempat: Strategi sisipan pemegang tempat (pengelas) ??meramalkan bilangan ruang letak untuk dimasukkan antara token bersebelahan. Ia memainkan peranan penting dalam menentukan struktur bahan tindak balas, sama seperti mengenal pasti kedudukan atom atau kumpulan tambahan dalam synthon perantaraan yang diperoleh daripada peringkat kedudukan semula jujukan.
  • Penyahkod token: strategi pemasukan token (pengelas), bertanggungjawab menjana token calon untuk setiap pemegang tempat. Ini penting untuk menentukan bahan tindak balas sebenar yang boleh digunakan untuk mensintesis produk sasaran. Proses ini boleh dilihat sebagai proses serupa yang dilakukan oleh synthon, digabungkan dengan operasi sisipan pemegang tempat.

Model EditRetro meningkatkan kecekapan penjanaan melalui penyahkod bukan autoregresifnya. Walaupun menggabungkan penyahkod tambahan untuk meramalkan operasi penyuntingan secara berulang, EditRetro melaksanakan operasi penyuntingan secara selari dalam setiap penyahkod (iaitu, penjanaan bukan autoregresif).

Apabila diberi molekul sasaran, pengekod mengambil rentetannya sebagai input dan menjana perwakilan tersembunyi yang sepadan, yang kemudiannya digunakan sebagai input kepada modul perhatian silang penyahkod. Begitu juga, penyahkod juga mengambil rentetan produk sebagai input pada lelaran pertama. Semasa setiap lelaran penyahkodan, tiga penyahkod dilaksanakan secara berurutan.

Lebih baik daripada garis dasar, jana bahan tindak balas yang tepat

Para penyelidik menilai kaedah yang dicadangkan pada set data penanda aras awam USPTO-50K dan USPTO-FULL. Keputusan percubaan yang meluas menunjukkan bahawa kaedah ini mengatasi garis dasar lain dari segi ketepatan ramalan, termasuk kaedah berasaskan jujukan R-SMILES yang terkini dan kaedah berasaskan penyuntingan graf Graph2Edits.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

EditRetro Percubaan meluas pada set data retrosintesis penanda aras USPTO-50K menunjukkan bahawa EditRetro mencapai prestasi unggul, dengan ketepatan padanan tepat 1 teratas sebanyak 60.8%.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Selain itu, pada set data USPTO-FULL yang lebih besar, ketepatan padanan tepat 1 teratas mencapai 52.2%, membuktikan keberkesanannya dalam tindak balas kimia yang lebih pelbagai dan mencabar.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

EditRetro juga menunjukkan prestasi yang lebih baik daripada kaedah asas dari segi ketepatan RoundTrip dan MaxFrag. Ini menunjukkan bahawa EditRetro boleh mempelajari peraturan kimia dengan berkesan.

Selain itu, EditRetro menyediakan ramalan yang pelbagai melalui modul inferens yang direka dengan baik. Modul ini menggabungkan pensampelan penempatan semula dan penambahan jujukan untuk membantu menjana ramalan yang pelbagai dan berubah. Ramalan sampel pensampelan semula kedudukan tindakan penempatan semula, membolehkan pengecaman tapak tindak balas yang berbeza. Peningkatan jujukan menjana laluan pengeditan yang berbeza daripada varian produk yang berbeza kepada bahan tindak balas, dengan itu meningkatkan ketepatan dan kepelbagaian ramalan. Kedua-dua strategi ini bekerjasama untuk meningkatkan ketepatan dan kepelbagaian ramalan.

Percubaan lanjut mengesahkan keunggulan EditRetro dalam beberapa tindak balas yang lebih kompleks, termasuk tindak balas kiral, pembukaan cincin dan pembentukan cincin. Hasilnya mengesahkan keunggulan EditRetro dalam senario yang mencabar ini, menunjukkan keupayaannya untuk mengendalikan pelbagai jenis transformasi kimia.

Kepraktikalan dalam perancangan sintesis berbilang langkah

Khususnya, kejayaan aplikasi EditRetro dalam empat senario perancangan retrosintesis berbilang langkah menunjukkan kepraktisannya.

Untuk menilai kegunaan EditRetro dalam perancangan sintesis, laluan kimia yang lengkap telah direka bentuk melalui ramalan retrosintetik berjujukan. Para penyelidik memilih empat sebatian sasaran dengan nilai farmaseutikal penting untuk penilaian: febuxostat, osimertinib, pengaktif allosterik GPX4, dan perencat kinase DDR1 INS015_037.

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature

Ilustrasi: Ramalan retrosintetik berbilang langkah EditRetro. (Sumber: kertas)

Keempat-empat contoh menghasilkan laluan retrosintetik yang sangat konsisten dengan yang dilaporkan dalam literatur, dengan kebanyakan ramalan berada di kedudukan dua teratas. Daripada 16 langkah individu yang dipertimbangkan, 10 mempunyai ketepatan ramalan 1. Keputusan ini menunjukkan potensi praktikal EditRetro dalam ramalan retrosintetik praktikal.

Kaedah ini dijangka mencari aplikasi praktikal dalam bidang perancangan retrosintetik dengan memberikan pandangan yang berharga dan memudahkan reka bentuk laluan sintetik yang cekap.

Atas ialah kandungan terperinci Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial PHP
1488
72
Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Jul 26, 2024 pm 05:38 PM

Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Jul 26, 2024 am 08:40 AM

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Aug 08, 2024 pm 09:22 PM

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Jul 26, 2024 pm 02:40 PM

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? Aug 07, 2024 pm 07:08 PM

Pada tahun 2023, hampir setiap bidang AI berkembang pada kelajuan yang tidak pernah berlaku sebelum ini. Pada masa yang sama, AI sentiasa menolak sempadan teknologi trek utama seperti kecerdasan yang terkandung dan pemanduan autonomi. Di bawah trend berbilang modal, adakah status Transformer sebagai seni bina arus perdana model besar AI akan digoncang? Mengapakah penerokaan model besar berdasarkan seni bina MoE (Campuran Pakar) menjadi trend baharu dalam industri? Bolehkah Model Penglihatan Besar (LVM) menjadi satu kejayaan baharu dalam penglihatan umum? ...Daripada surat berita ahli PRO 2023 laman web ini yang dikeluarkan dalam tempoh enam bulan lalu, kami telah memilih 10 tafsiran khas yang menyediakan analisis mendalam tentang aliran teknologi dan perubahan industri dalam bidang di atas untuk membantu anda mencapai matlamat anda dalam bidang baharu. tahun. Tafsiran ini datang dari Week50 2023

Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature Kadar ketepatan mencapai 60.8%. Model ramalan retrosintesis kimia Universiti Zhejiang berdasarkan Transformer diterbitkan dalam sub-jurnal Nature Aug 06, 2024 pm 07:34 PM

Editor |. KX Retrosynthesis ialah tugas kritikal dalam penemuan ubat dan sintesis organik, dan AI semakin digunakan untuk mempercepatkan proses. Kaedah AI sedia ada mempunyai prestasi yang tidak memuaskan dan kepelbagaian terhad. Dalam amalan, tindak balas kimia sering menyebabkan perubahan molekul tempatan, dengan pertindihan yang besar antara bahan tindak balas dan produk. Diilhamkan oleh ini, pasukan Hou Tingjun di Universiti Zhejiang mencadangkan untuk mentakrifkan semula ramalan retrosintetik satu langkah sebagai tugas penyuntingan rentetan molekul, secara berulang menapis rentetan molekul sasaran untuk menghasilkan sebatian prekursor. Dan model retrosintetik berasaskan penyuntingan EditRetro dicadangkan, yang boleh mencapai ramalan berkualiti tinggi dan pelbagai. Eksperimen yang meluas menunjukkan bahawa model itu mencapai prestasi cemerlang pada set data penanda aras standard USPTO-50 K, dengan ketepatan 1 teratas 60.8%.

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

See all articles