


Combat pratique de robots d'exploration en Python?: robot d'exploration de compte public WeChat
Jun 10, 2023 am 09:01 AMPython est un langage de programmation élégant doté de puissantes capacités de traitement des données et d'exploration du Web. à l’ère du numérique, Internet regorge d’une grande quantité de données et les robots d’exploration sont devenus un moyen important d’obtenir des données. Par conséquent, les robots d’exploration Python sont largement utilisés dans l’analyse et l’exploration de données.
Dans cet article, nous présenterons comment utiliser le robot d'exploration Python pour obtenir des informations sur les articles du compte public WeChat. Le compte officiel WeChat est une plateforme de médias sociaux populaire pour la publication d'articles en ligne et constitue un outil important pour la promotion et le marketing de nombreuses entreprises et médias personnels.
Voici les étapes?:
- Installer la bibliothèque de robots d'exploration Python
Python propose de nombreuses bibliothèques de robots d'exploration. Dans cet exemple, nous utiliserons la bibliothèque d'exploration Python beautifulsoup4 pour extraire les informations sur les articles du compte public WeChat. Utilisez pip pour installer cette bibliothèque :
pip install beautifulsoup4
- Obtenez le lien des articles historiques du compte public WeChat
Il est très simple de récupérer l'historique articles d'un compte public. Nous devons d'abord trouver le nom ou l'ID du compte public. Par exemple : l'ID du compte public "Zen of Python" est "Zen-of-Python".
Il est difficile de capturer directement les données de la version Web de WeChat, nous avons donc besoin d'outils pour obtenir facilement la page de liste des articles. Dans cet exemple, j'utiliserai le service fourni par Sogou WeChat Search, qui permet d'obtenir facilement la page de liste d'articles de chaque compte officiel sur WeChat.
Nous devons installer le framework Robot et la bibliothèque Selenium pour simuler les opérations du navigateur et obtenir la page de liste d'articles via le moteur de recherche.
pip install robotframework pip install robotframework-seleniumlibrary pip install selenium
- Obtenir des informations supplémentaires sur l'article
Pour chaque lien d'article, nous devons également obtenir des informations supplémentaires sur l'article, telles que le titre de l'article, la version époque, auteur, etc. Encore une fois, nous utiliserons la bibliothèque beautifulsoup4 pour extraire ces informations.
Ce qui suit est un extrait de code qui peut capturer le lien de l'article du compte public, ainsi que le titre, l'heure de publication, le volume de lecture et le nombre de likes de chaque article :
import requests from bs4 import BeautifulSoup import time url = "http://weixin.sogou.com/weixin?type=1&query={}".format("Python之禪") # 使用Selenium工具來模擬瀏覽器操作 from selenium import webdriver driver = webdriver.Chrome() driver.get(url) # 執(zhí)行搜索動作 search_box = driver.find_element_by_xpath('//*[@id="query"]') search_box.send_keys(u"Python之禪") search_box.submit() # 點擊搜索結(jié)果中的公眾號 element = driver.find_element_by_xpath('//div[@class="news-box"]/ul/li[2]/div[2]/h3/a') element.click() # 等待頁面加載 time.sleep(3) # 點擊“歷史消息”鏈接 element = driver.find_element_by_xpath('//a[@title="歷史消息"]') element.click() # 等待頁面加載 time.sleep(3) # 獲取文章鏈接 soup = BeautifulSoup(driver.page_source, 'html.parser') urls = [] for tag in soup.find_all("a", href=True): url = tag["href"] if "mp.weixin.qq.com" in url: urls.append(url) # 獲取每篇文章的標(biāo)題、發(fā)布時間、閱讀量和點贊數(shù) for url in urls: response = requests.get(url) response.encoding = 'utf-8' soup = BeautifulSoup(response.text, 'html.parser') title = soup.find('h2', {'class': 'rich_media_title'}).text.strip() date = soup.find('em', {'id': 'post-date'}).text.strip() readnum = soup.find('span', {'class': 'read_num'}).text.strip() likenum = soup.find('span', {'class': 'like_num'}).text.strip() print(title, date, readnum, likenum)#???? #Ce qui précède est cet article Pratique Python?:?Tout le contenu du robot d'exploration de compte public WeChat. Ce robot d'exploration peut obtenir des informations pertinentes à partir d'articles historiques des comptes publics WeChat et effectuer un traitement d'extraction plus spécifique via la bibliothèque beautifulsoup4 et les outils Selenium. Si vous souhaitez utiliser les robots d'exploration Python pour découvrir des informations plus précieuses, cet exemple est un excellent point de départ.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Pour réaliser la correction d'erreur de texte et l'optimisation de la syntaxe avec l'IA, vous devez suivre les étapes suivantes: 1. Sélectionnez un modèle ou une API d'IA appropriée, tels que Baidu, Tencent API ou bibliothèque NLP open source; 2. Appelez l'API via Curl ou Guzzle de PHP et traitez les résultats de retour; 3. Afficher les informations de correction d'erreur dans l'application et permettre aux utilisateurs de choisir d'adopter l'adoption; 4. Utilisez PHP-L et PHP_CODESNIFFER pour la détection de syntaxe et l'optimisation du code; 5. Collectez en continu les commentaires et mettez à jour le modèle ou les règles pour améliorer l'effet. Lorsque vous choisissez AIAPI, concentrez-vous sur l'évaluation de la précision, de la vitesse de réponse, du prix et du support pour PHP. L'optimisation du code doit suivre les spécifications du PSR, utiliser le cache raisonnablement, éviter les requêtes circulaires, revoir le code régulièrement et utiliser x

L'entrée vocale de l'utilisateur est capturée et envoyée au backend PHP via l'API MediaRecorder du JavaScript frontal; 2. PHP enregistre l'audio en tant que fichier temporaire et appelle STTAPI (tel que Google ou Baidu Voice Recognition) pour le convertir en texte; 3. PHP envoie le texte à un service d'IA (comme Openaigpt) pour obtenir une réponse intelligente; 4. PHP appelle ensuite TTSAPI (comme Baidu ou Google Voice Synthesis) pour convertir la réponse en fichier vocal; 5. PHP diffuse le fichier vocal vers l'avant pour jouer, terminant l'interaction. L'ensemble du processus est dominé par PHP pour assurer une connexion transparente entre toutes les liens.

Cet article a sélectionné plusieurs sites Web de projet "finis" Python et des portails de ressources d'apprentissage "Blockbuster" de haut niveau pour vous. Que vous recherchiez l'inspiration de développement, l'observation et l'apprentissage du code source au niveau de la ma?trise ou que vous amélioriez systématiquement vos capacités pratiques, ces plateformes ne sont pas manquées et peuvent vous aider à devenir un ma?tre Python rapidement.

Pour collecter les données de comportement des utilisateurs, vous devez enregistrer la navigation, la recherche, l'achat et d'autres informations dans la base de données via PHP et les nettoyer et les analyser pour explorer les préférences d'intérêt; 2. La sélection des algorithmes de recommandation doit être déterminée sur la base des caractéristiques des données: en fonction du contenu, du filtrage collaboratif, des règles ou des recommandations mitigées; 3. Le filtrage collaboratif peut être mis en ?uvre en PHP pour calculer la similitude du cosinus des utilisateurs, sélectionner K voisins les plus proches, les scores de prédiction pondérés et recommander des produits à haut score; 4. L'évaluation des performances utilise la précision, le rappel, la valeur F1 et le CTR, le taux de conversion et vérifier l'effet par le biais de tests A / B; 5. Les problèmes de démarrage à froid peuvent être atténués par des attributs de produits, des informations d'enregistrement des utilisateurs, des recommandations populaires et des évaluations d'experts; 6. Les méthodes d'optimisation des performances comprennent les résultats de recommandation en cache, le traitement asynchrone, l'informatique distribuée et l'optimisation des requêtes SQL, améliorant ainsi l'efficacité des recommandations et l'expérience utilisateur.

Lorsque vous choisissez un cadre PHP approprié, vous devez considérer de manière approfondie en fonction des besoins du projet: Laravel convient au développement rapide et fournit des moteurs de modèle éloquente et de lame, qui sont pratiques pour le fonctionnement de la base de données et le rendu de formulaire dynamique; Symfony est plus flexible et adapté aux systèmes complexes; Codeigniter est léger et adapté à des applications simples avec des exigences de performance élevées. 2. Pour assurer la précision des modèles d'IA, nous devons commencer avec une formation de données de haute qualité, une sélection raisonnable des indicateurs d'évaluation (tels que la précision, le rappel, la valeur F1), l'évaluation régulière des performances et le réglage du modèle, et assurer la qualité du code grace aux tests unitaires et aux tests d'intégration, tout en surveillant continuellement les données d'entrée pour empêcher la dérive des données. 3. De nombreuses mesures sont nécessaires pour protéger la confidentialité des utilisateurs: crypter et stocker des données sensibles (comme AES

Utilisez le plot conjoint de Seaborn pour visualiser rapidement la relation et la distribution entre deux variables; 2. Le tracé de diffusion de base est implémenté par sn.jointplot (data = pointes, x = "total_bill", y = "Tip", kind = "dispers"), le centre est un tracé de dispersion et l'histogramme est affiché sur les c?tés supérieur et inférieur et droit; 3. Ajouter des lignes de régression et des informations de densité à un kind = "reg" et combiner marginal_kws pour définir le style de tracé de bord; 4. Lorsque le volume de données est important, il est recommandé d'utiliser "Hex"

1. PHP entreprend principalement la collecte de données, la communication API, le traitement des règles d'entreprise, l'optimisation du cache et l'affichage de recommandation dans le système de recommandation de contenu d'IA, plut?t que d'effectuer directement une formation de modèle complexe; 2. Le système recueille le comportement des utilisateurs et les données de contenu via PHP, appelle les services d'IA back-end (tels que les modèles Python) pour obtenir des résultats de recommandation et utilise Redis Cache pour améliorer les performances; 3. Les algorithmes de recommandation de base tels que le filtrage collaboratif ou la similitude de contenu peuvent implémenter une logique légère en PHP, mais l'informatique à grande échelle dépend toujours des services d'IA professionnels; 4. L'optimisation doit prêter attention au démarrage en temps réel, au démarrage à froid, à la diversité et à la boucle fermée, et les défis comprennent des performances de concurrence élevées, la stabilité de la mise à jour du modèle, la conformité des données et l'interprétabilité des recommandations. PHP doit travailler ensemble pour créer des informations stables, une base de données et un frontal.

Le noyau du développement par PHP du résumé du texte d'IA est d'appeler les API de service AI externes (comme OpenAI, HuggingFace) en tant que coordinateur pour réaliser le prétraitement du texte, les demandes d'API, l'analyse de la réponse et l'affichage des résultats; 2. La limitation est que les performances informatiques sont faibles et que l'écosystème de l'IA est faible. La stratégie de réponse consiste à tirer parti des API, un découplage de service et un traitement asynchrone; 3. La sélection des modèles doit peser la qualité du résumé, le co?t, le retard, la concurrence, la confidentialité des données et des modèles abstraits tels que GPT ou BART / T5 sont recommandés; 4. L'optimisation des performances comprend le cache, les files d'attente asynchrones, le traitement par lots et la sélection des zones à proximité. Le traitement des erreurs doit couvrir la limite actuelle RETRING, le délai d'expiration du réseau, la sécurité des clés, la vérification et la journalisation des entrées pour assurer le fonctionnement stable et efficace du système.
