亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Maison développement back-end Tutoriel Python Projet Mata Kuliah Intelligence artificielle?-?Reconnaissance des expressions faciales

Projet Mata Kuliah Intelligence artificielle?-?Reconnaissance des expressions faciales

Dec 29, 2024 pm 05:19 PM

Brève explication

Le projet ? Face Expression Recognition ? vise à reconna?tre les expressions faciales humaines à l'aide de la méthode Convolutional Neural Network (CNN). L'algorithme CNN est appliqué pour analyser des données visuelles telles que des images faciales au format niveaux de gris, qui sont ensuite classées en sept catégories d'expressions de base?: heureux, triste, en colère, surpris, effrayé, dégo?té et neutre. Ce modèle a été formé à l'aide de l'ensemble de données FER2013 et a réussi à atteindre une précision de 91,67 % après un entra?nement pendant 500 époques.

Objectifs du projet

Ce projet "Face Expression Recognition" est le projet final du cours d'Intelligence Artificielle où dans ce projet il y a des réalisations qui doivent être réalisées notamment?:

  1. Développement d'un système de reconnaissance des expressions faciales basé sur l'intelligence artificielle. Ce système devrait être capable d'identifier automatiquement et avec précision les émotions émises par les expressions faciales.
  2. Expérimentez des algorithmes d'apprentissage automatique pour améliorer la précision de la reconnaissance des expressions faciales. Dans ce projet, l'algorithme CNN est testé pour comprendre dans quelle mesure ce modèle est capable de reconna?tre des motifs complexes dans les images faciales. Cet effort comprend également l'optimisation des paramètres du modèle, l'ajout de données d'entra?nement et l'utilisation de méthodes d'augmentation des données.

Pile technologique?utilisée

  1. Framework?: Python utilise des bibliothèques telles que TensorFlow/Keras pour l'implémentation de CNN.
  2. Ensemble de données?: L'ensemble de données utilisé est FER2013 (Facial Expression Recognition 2013), qui contient 35 887 images en niveaux de gris de visages de dimensions 48x48 pixels. Ces images sont accompagnées d'étiquettes couvrant sept catégories d'expressions de base.
  3. Outils?:?
  • NumPy et Pandas pour la manipulation des données.
  • Matplotlib pour la visualisation.
  • Haar Cascade pour la détection des visages depuis la caméra.

Résultats

  1. Heureux Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  2. Triste Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  3. En colère Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  4. Neutre Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  5. Surpris Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  6. Peur Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
  7. Dégo?tant Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition

Les problèmes et comment je les gère

  1. Le problème des différences d'éclairage qui affecte le niveau de précision.?
    Les variations d'éclairage peuvent affecter la précision du modèle. Pour surmonter cela, une normalisation des données est effectuée pour garantir que l'éclairage de l'image est plus uniforme afin que les motifs des images faciales puissent être mieux reconnus.

  2. Complexité d'expressions similaire.
    Certaines expressions, telles que ? effrayé ? et ? surpris ?, présentent des caractéristiques similaires difficiles à différencier pour le modèle. La solution mise en ?uvre consiste à effectuer une augmentation des données telle que des changements de rotation, de zoom, de retournement et de contraste pour augmenter la capacité de généralisation du modèle à de nouvelles données.

  3. Ensemble de données assez limité
    L'ensemble de données FER2013, bien qu'assez volumineux, ne couvre pas toute la gamme des variations de visage à l'échelle mondiale. Pour enrichir l'ensemble de données, j'ai utilisé des techniques d'augmentation des données et ajouté des données provenant d'autres sources pertinentes pour créer une meilleure représentation des expressions faciales.

Le?ons apprises

Ce projet fournit un aper?u approfondi de la manière dont les systèmes basés sur l'intelligence artificielle peuvent être utilisés pour reconna?tre les expressions faciales. Le processus de développement montre l'importance de?:

  1. Prétraitement des données pour résoudre les problèmes d'éclairage et améliorer la qualité des données.
  2. Expérimentez les paramètres d'entra?nement pour obtenir la combinaison optimale, tels que la définition du nombre d'époques, du taux d'apprentissage et de la taille du lot.
  3. Diversité accrue des données d'entra?nement grace à l'augmentation pour améliorer les performances du modèle par rapport aux données du monde réel.

En surmontant les défis existants, ce projet a réussi à construire un modèle de reconnaissance des expressions faciales qui peut être appliqué à diverses applications telles que l'interaction homme-machine, l'analyse des émotions et la surveillance psychologique.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefa?on, veuillez contacter admin@php.cn

Outils d'IA chauds

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Polymorphisme dans les classes python Polymorphisme dans les classes python Jul 05, 2025 am 02:58 AM

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance

Arguments et paramètres de fonction Python Arguments et paramètres de fonction Python Jul 04, 2025 am 03:26 AM

Les paramètres sont des espaces réservés lors de la définition d'une fonction, tandis que les arguments sont des valeurs spécifiques transmises lors de l'appel. 1. Les paramètres de position doivent être passés dans l'ordre, et l'ordre incorrect entra?nera des erreurs dans le résultat; 2. Les paramètres de mots clés sont spécifiés par les noms de paramètres, qui peuvent modifier l'ordre et améliorer la lisibilité; 3. Les valeurs de paramètres par défaut sont attribuées lorsqu'elles sont définies pour éviter le code en double, mais les objets variables doivent être évités comme valeurs par défaut; 4. Les args et * kwargs peuvent gérer le nombre incertain de paramètres et conviennent aux interfaces générales ou aux décorateurs, mais doivent être utilisées avec prudence pour maintenir la lisibilité.

Expliquez les générateurs et itérateurs Python. Expliquez les générateurs et itérateurs Python. Jul 05, 2025 am 02:55 AM

Les itérateurs sont des objets qui implémentent __iter __ () et __Next __ (). Le générateur est une version simplifiée des itérateurs, qui implémentent automatiquement ces méthodes via le mot clé de rendement. 1. L'ITERATOR renvoie un élément chaque fois qu'il appelle Next () et lance une exception d'arrêt lorsqu'il n'y a plus d'éléments. 2. Le générateur utilise la définition de la fonction pour générer des données à la demande, enregistrer la mémoire et prendre en charge les séquences infinies. 3. Utilisez des itérateurs lors du traitement des ensembles existants, utilisez un générateur lors de la génération de Big Data ou de l'évaluation paresseuse, telles que le chargement ligne par ligne lors de la lecture de fichiers volumineux. Remarque: les objets itérables tels que les listes ne sont pas des itérateurs. Ils doivent être recréés après que l'itérateur a atteint sa fin, et le générateur ne peut le traverser qu'une seule fois.

Python `@ ClassMethod` Décorateur expliqué Python `@ ClassMethod` Décorateur expliqué Jul 04, 2025 am 03:26 AM

Une méthode de classe est une méthode définie dans Python via le décorateur @classMethod. Son premier paramètre est la classe elle-même (CLS), qui est utilisée pour accéder ou modifier l'état de classe. Il peut être appelé via une classe ou une instance, qui affecte la classe entière plut?t que par une instance spécifique; Par exemple, dans la classe de personne, la méthode show_count () compte le nombre d'objets créés; Lorsque vous définissez une méthode de classe, vous devez utiliser le décorateur @classMethod et nommer le premier paramètre CLS, tel que la méthode Change_var (new_value) pour modifier les variables de classe; La méthode de classe est différente de la méthode d'instance (auto-paramètre) et de la méthode statique (pas de paramètres automatiques), et convient aux méthodes d'usine, aux constructeurs alternatifs et à la gestion des variables de classe. Les utilisations courantes incluent:

Comment gérer l'authentification de l'API dans Python Comment gérer l'authentification de l'API dans Python Jul 13, 2025 am 02:22 AM

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Quelles sont les méthodes Python Magic ou les méthodes Dunder? Quelles sont les méthodes Python Magic ou les méthodes Dunder? Jul 04, 2025 am 03:20 AM

Les MagicMethodes de Python (ou Méthodes Dunder) sont des méthodes spéciales utilisées pour définir le comportement des objets, qui commencent et se terminent par un double soulignement. 1. Ils permettent aux objets de répondre aux opérations intégrées, telles que l'addition, la comparaison, la représentation des cha?nes, etc.; 2. Les cas d'utilisation courants incluent l'initialisation et la représentation des objets (__init__, __repr__, __str__), les opérations arithmétiques (__add__, __sub__, __mul__) et les opérations de comparaison (__eq__, ___lt__); 3. Lorsque vous l'utilisez, assurez-vous que leur comportement répond aux attentes. Par exemple, __Repr__ devrait retourner les expressions d'objets refactorables et les méthodes arithmétiques devraient renvoyer de nouvelles instances; 4. Des choses sur l'utilisation ou la confusion doivent être évitées.

Comment fonctionne la gestion de la mémoire Python? Comment fonctionne la gestion de la mémoire Python? Jul 04, 2025 am 03:26 AM

PythonManagesMemoryAutomAticalusingreferenceCountandAgarBageCollect

Python ?@ Property? décorateur Python ?@ Property? décorateur Jul 04, 2025 am 03:28 AM

@Property est un décorateur de Python utilisé pour masquer les méthodes comme propriétés, permettant des jugements logiques ou un calcul dynamique des valeurs lors de l'accès aux propriétés. 1. Il définit la méthode Getter via le décorateur @property, de sorte que l'extérieur appelle la méthode comme l'accès aux attributs; 2. Il peut contr?ler le comportement d'attribution avec .setter, tel que la validité de la valeur de vérification, si le .setter n'est pas défini, il s'agit d'un attribut en lecture seule; 3. Il convient à des scènes telles que la vérification de l'attribution de propriétés, la génération dynamique de valeurs d'attribut et la masquage des détails de l'implémentation interne; 4. Lorsque vous l'utilisez, veuillez noter que le nom d'attribut est différent du nom de variable privé pour éviter les boucles mortes et convient aux opérations légères; 5. Dans l'exemple, la classe Circle restreint le rayon non négatif, et la classe de personne génère dynamiquement l'attribut Full_name

See all articles