


Cache Python?: comment accélérer votre code avec une mise en cache efficace
Dec 16, 2024 am 02:32 AMCe blog a été initialement publié sur le blog Crawlbase
Un code efficace et rapide est important pour créer une expérience utilisateur exceptionnelle dans les applications logicielles. Les utilisateurs n’aiment pas attendre des réponses lentes, qu’il s’agisse du chargement d’une page Web, de la formation d’un modèle d’apprentissage automatique ou de l’exécution d’un script. Une fa?on d'accélérer votre code est la mise en cache.
Le but de la mise en cache est de mettre temporairement en cache les données fréquemment utilisées afin que votre programme puisse y accéder plus rapidement sans avoir à les recalculer ou à les récupérer plusieurs fois. La mise en cache peut accélérer les temps de réponse, réduire la charge et améliorer l'expérience utilisateur.
Ce blog couvrira les principes de la mise en cache, son r?le, les cas d'utilisation, les stratégies et des exemples concrets de mise en cache en Python. Commen?ons?!
Implémentation de la mise en cache en Python
La mise en cache peut être effectuée en Python de plusieurs manières. Examinons deux méthodes courantes?: utiliser un décorateur manuel pour la mise en cache et functools.lru_cache intégré à Python.
1. Décorateur manuel pour la mise en cache
Un décorateur est une fonction qui entoure une autre fonction. Nous pouvons créer un décorateur de mise en cache qui stocke le résultat des appels de fonction en mémoire et renvoie le résultat mis en cache si la même entrée est appelée à nouveau. Voici un exemple?:
import requests # Manual caching decorator def memoize(func): cache = {} def wrapper(*args): if args in cache: return cache[args] result = func(*args) cache[args] = result return result return wrapper # Function to get data from a URL @memoize def get_html(url): response = requests.get(url) return response.text # Example usage print(get_html('https://crawlbase.com'))
Dans cet exemple, la première fois que get_html est appelé, il récupère les données de l'URL et les met en cache. Lors des appels suivants avec la même URL, le résultat mis en cache est renvoyé.
- Utilisation de functools.lru_cache de Python
Python fournit un mécanisme de mise en cache intégré appelé lru_cache à partir du module functools. Ce décorateur met en cache les appels de fonction et supprime les éléments les moins récemment utilisés lorsque le cache est plein. Voici comment l'utiliser?:
from functools import lru_cache @lru_cache(maxsize=128) def expensive_computation(x, y): return x * y # Example usage print(expensive_computation(5, 6))
Dans cet exemple, lru_cache met en cache le résultat de co?teux_computation. Si la fonction est appelée à nouveau avec les mêmes arguments, elle renvoie le résultat mis en cache au lieu de recalculer.
Comparaison des performances des stratégies de mise en cache
Lorsque vous choisissez une stratégie de mise en cache, vous devez tenir compte de ses performances dans différentes conditions. Les performances des stratégies de mise en cache dépendent du nombre d'accès au cache (lorsque des données sont trouvées dans le cache) et de la taille du cache.
Voici une comparaison des stratégies de mise en cache courantes?:
Le choix de la bonne stratégie de mise en cache dépend des modèles d'accès aux données et des besoins en performances de votre application.
Pensées finales
La mise en cache peut être très utile pour vos applications. Cela peut réduire le temps de récupération des données et la charge du système. Que vous créiez une application Web, un projet d'apprentissage automatique ou que vous souhaitiez accélérer votre système, la mise en cache intelligente peut accélérer l'exécution de votre code.
Les méthodes de mise en cache telles que FIFO, LRU et LFU ont des cas d'utilisation différents. Par exemple, LRU convient aux applications Web qui doivent conserver les données fréquemment consultées, tandis que LFU convient aux programmes qui doivent stocker des données au fil du temps.
La mise en ?uvre correcte de la mise en cache vous permettra de concevoir des applications plus rapides et plus efficaces et d'obtenir de meilleures performances et une meilleure expérience utilisateur.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance

Les itérateurs sont des objets qui implémentent __iter __ () et __Next __ (). Le générateur est une version simplifiée des itérateurs, qui implémentent automatiquement ces méthodes via le mot clé de rendement. 1. L'ITERATOR renvoie un élément chaque fois qu'il appelle Next () et lance une exception d'arrêt lorsqu'il n'y a plus d'éléments. 2. Le générateur utilise la définition de la fonction pour générer des données à la demande, enregistrer la mémoire et prendre en charge les séquences infinies. 3. Utilisez des itérateurs lors du traitement des ensembles existants, utilisez un générateur lors de la génération de Big Data ou de l'évaluation paresseuse, telles que le chargement ligne par ligne lors de la lecture de fichiers volumineux. Remarque: les objets itérables tels que les listes ne sont pas des itérateurs. Ils doivent être recréés après que l'itérateur a atteint sa fin, et le générateur ne peut le traverser qu'une seule fois.

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Une méthode courante pour parcourir deux listes simultanément dans Python consiste à utiliser la fonction zip (), qui appariera plusieurs listes dans l'ordre et sera la plus courte; Si la longueur de liste est incohérente, vous pouvez utiliser itertools.zip_langest () pour être le plus long et remplir les valeurs manquantes; Combiné avec enumerate (), vous pouvez obtenir l'index en même temps. 1.zip () est concis et pratique, adapté à l'itération des données appariées; 2.zip_langest () peut remplir la valeur par défaut lorsqu'il s'agit de longueurs incohérentes; 3. L'énumération (zip ()) peut obtenir des indices pendant la traversée, en répondant aux besoins d'une variété de scénarios complexes.

Inpython, itérateurslawjectsThatallowloopingthroughCollectionsbyImpleting __iter __ () et__Next __ (). 1) iteratorsworkVeatheitorat

Assert est un outil d'affirmation utilisé dans Python pour le débogage et lance une affirmation d'établissement lorsque la condition n'est pas remplie. Sa syntaxe est affirmer la condition plus les informations d'erreur facultatives, qui conviennent à la vérification de la logique interne telle que la vérification des paramètres, la confirmation d'état, etc., mais ne peuvent pas être utilisées pour la sécurité ou la vérification des entrées des utilisateurs, et doit être utilisée en conjonction avec des informations d'invite claires. Il n'est disponible que pour le débogage auxiliaire au stade de développement plut?t que pour remplacer la manipulation des exceptions.

TypeHintsInpythonsolvetheproblebandofambigu?té et opposant à un montant de type de type parallèlement au développement de l'aménagement en fonction des types de type.

Pour créer des API modernes et efficaces à l'aide de Python, FastAPI est recommandé; Il est basé sur des invites de type Python standard et peut générer automatiquement des documents, avec d'excellentes performances. Après avoir installé FastAPI et ASGI Server Uvicorn, vous pouvez écrire du code d'interface. En définissant les itinéraires, en écrivant des fonctions de traitement et en renvoyant des données, les API peuvent être rapidement construites. Fastapi prend en charge une variété de méthodes HTTP et fournit des systèmes de documentation SwaggerUI et Redoc générés automatiquement. Les paramètres d'URL peuvent être capturés via la définition du chemin, tandis que les paramètres de requête peuvent être implémentés en définissant des valeurs par défaut pour les paramètres de fonction. L'utilisation rationnelle des modèles pydantiques peut aider à améliorer l'efficacité du développement et la précision.
