


Comment puis-je traiter efficacement de gigantesques fichiers CSV dans Python 2.7 sans rencontrer de problèmes de mémoire??
Nov 08, 2024 am 04:52 AMLecture de fichiers CSV gigantesques?: optimisation de la mémoire et de la vitesse
Lorsque vous essayez de traiter des fichiers CSV volumineux comportant des millions de lignes et des centaines de colonnes, les méthodes traditionnelles les approches utilisant des itérateurs peuvent entra?ner des problèmes liés à la mémoire. Cet article explore les techniques optimisées pour gérer les données CSV à grande échelle dans Python 2.7.
Optimisation de la mémoire?:
Le n?ud du problème de mémoire réside dans la construction de listes en mémoire pour stocker de grands ensembles de données. Pour atténuer ce problème, Python propose le mot-clé rendement, qui convertit les fonctions en fonctions génératrices. Ces fonctions suspendent l'exécution après chaque instruction de rendement, permettant un traitement incrémentiel des données au fur et à mesure qu'elles sont rencontrées.
En employant des fonctions de générateur, vous pouvez traiter les données ligne par ligne, éliminant ainsi le besoin de stocker des fichiers entiers en mémoire. Le code suivant illustre cette approche?:
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
Améliorations de la vitesse?:
De plus, vous pouvez tirer parti des fonctions dropwhile et takewhile de Python pour améliorer encore la vitesse de traitement. Ces fonctions peuvent filtrer efficacement les données, vous permettant de localiser rapidement les lignes qui vous intéressent. Voici comment?:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
Traitement en boucle simplifié?:
En combinant les fonctions du générateur, vous pouvez grandement simplifier le processus de bouclage dans votre ensemble de données. Voici le code optimisé pour getstuff et getdata?:
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
Maintenant, vous pouvez directement parcourir le générateur getdata, qui produit un flux de lignes ligne par ligne, libérant ainsi de précieuses ressources mémoire.
N'oubliez pas que l'objectif est de minimiser le stockage des données en mémoire tout en maximisant l'efficacité du traitement. En appliquant ces techniques d'optimisation, vous pouvez gérer efficacement des fichiers CSV gigantesques sans rencontrer d'obstacles de mémoire.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance

Les itérateurs sont des objets qui implémentent __iter __ () et __Next __ (). Le générateur est une version simplifiée des itérateurs, qui implémentent automatiquement ces méthodes via le mot clé de rendement. 1. L'ITERATOR renvoie un élément chaque fois qu'il appelle Next () et lance une exception d'arrêt lorsqu'il n'y a plus d'éléments. 2. Le générateur utilise la définition de la fonction pour générer des données à la demande, enregistrer la mémoire et prendre en charge les séquences infinies. 3. Utilisez des itérateurs lors du traitement des ensembles existants, utilisez un générateur lors de la génération de Big Data ou de l'évaluation paresseuse, telles que le chargement ligne par ligne lors de la lecture de fichiers volumineux. Remarque: les objets itérables tels que les listes ne sont pas des itérateurs. Ils doivent être recréés après que l'itérateur a atteint sa fin, et le générateur ne peut le traverser qu'une seule fois.

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Une méthode courante pour parcourir deux listes simultanément dans Python consiste à utiliser la fonction zip (), qui appariera plusieurs listes dans l'ordre et sera la plus courte; Si la longueur de liste est incohérente, vous pouvez utiliser itertools.zip_langest () pour être le plus long et remplir les valeurs manquantes; Combiné avec enumerate (), vous pouvez obtenir l'index en même temps. 1.zip () est concis et pratique, adapté à l'itération des données appariées; 2.zip_langest () peut remplir la valeur par défaut lorsqu'il s'agit de longueurs incohérentes; 3. L'énumération (zip ()) peut obtenir des indices pendant la traversée, en répondant aux besoins d'une variété de scénarios complexes.

TypeHintsInpythonsolvetheproblebandofambigu?té et opposant à un montant de type de type parallèlement au développement de l'aménagement en fonction des types de type.

Inpython, itérateurslawjectsThatallowloopingthroughCollectionsbyImpleting __iter __ () et__Next __ (). 1) iteratorsworkVeatheitorat

Assert est un outil d'affirmation utilisé dans Python pour le débogage et lance une affirmation d'établissement lorsque la condition n'est pas remplie. Sa syntaxe est affirmer la condition plus les informations d'erreur facultatives, qui conviennent à la vérification de la logique interne telle que la vérification des paramètres, la confirmation d'état, etc., mais ne peuvent pas être utilisées pour la sécurité ou la vérification des entrées des utilisateurs, et doit être utilisée en conjonction avec des informations d'invite claires. Il n'est disponible que pour le débogage auxiliaire au stade de développement plut?t que pour remplacer la manipulation des exceptions.

Pour tester l'API, vous devez utiliser la bibliothèque des demandes de Python. Les étapes consistent à installer la bibliothèque, à envoyer des demandes, à vérifier les réponses, à définir des délais d'attente et à réessayer. Tout d'abord, installez la bibliothèque via PiPinstallRequests; Utilisez ensuite les demandes.get () ou les demandes.Post () et d'autres méthodes pour envoyer des demandes GET ou POST; Vérifiez ensuite la réponse.status_code et la réponse.json () pour vous assurer que le résultat de retour est en conformité avec les attentes; Enfin, ajoutez des paramètres de délai d'expiration pour définir l'heure du délai d'expiration et combinez la bibliothèque de réessayer pour obtenir une nouvelle tentative automatique pour améliorer la stabilité.
