亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Backend Development PHP Tutorial Failover and recovery mechanism in Nginx load balancing solution

Failover and recovery mechanism in Nginx load balancing solution

Oct 15, 2023 am 11:14 AM
nginx load balancing failover

Failover and recovery mechanism in Nginx load balancing solution

Failover and recovery mechanism in Nginx load balancing solution

Introduction:
For high-load websites, the use of load balancing is to ensure high availability and One of the important means to improve performance. As a powerful open source web server, Nginx's load balancing function has been widely used. In load balancing, how to implement failover and recovery mechanisms is an important issue that needs to be considered. This article will introduce the failover and recovery mechanism in Nginx load balancing and give specific code examples.

1. Failover mechanism
Failover refers to the ability of the system to seamlessly transfer the load to other normal nodes when one or multiple nodes fail. Nginx provides a variety of failover mechanism configuration options. Here are some commonly used methods.

  1. Health check-based failover
    Nginx’s upstream module provides a failover mechanism based on active health checks. By regularly sending health check requests to the backend server, the availability of the node can be judged and load balancing can be performed based on the check results. When a node fails, Nginx will automatically forward requests to other normal nodes to achieve failover.

The following is an example of a load balancing configuration based on health check:

upstream backend {
    server backend1.example.com:80;
    server backend2.example.com:80;
    check interval=3000 rise=2 fall=3 timeout=1000;
}

server {
    listen 80;
    server_name example.com;

    location / {
        proxy_pass http://backend;
    }
}

In the above configuration, a health check request will be sent to the backend server every 3 seconds. When there are two consecutive normal responses, the node is considered to be back to normal; when there are three consecutive abnormal responses, the node is considered to be faulty. Nginx will perform load balancing based on node availability and automatically switch to normal nodes.

  1. Failover based on active detection
    The stream module of Nginx provides a failover mechanism based on active detection. By periodically sending probe requests to the backend server, the availability of nodes can be detected and load balancing can be performed based on the probe results. When a node fails, Nginx will automatically forward the request to other normal nodes to achieve failover.

The following is an example of a load balancing configuration based on active detection:

stream {
    upstream backend {
        server backend1.example.com:80;
        server backend2.example.com:80;
        check interval=3000 rise=2 fall=3 timeout=1000;
    }

    server {
        listen 80;
        proxy_pass backend;
    }
}

In the above configuration, a detection request will be sent to the backend server every 3 seconds. When there are two consecutive normal responses, the node is considered to be back to normal; when there are three consecutive abnormal responses, the node is considered to be faulty. Nginx will perform load balancing based on node availability and automatically switch to normal nodes.

2. Failure recovery mechanism
Failure recovery refers to the ability of the system to automatically redistribute the load to the node after a node failure is repaired. Nginx provides a variety of configuration options for failure recovery mechanisms. Here are some commonly used methods.

  1. Failure recovery based on health check
    Nginx’s upstream module also provides a failure recovery mechanism based on active health check. After the node's availability is restored, Nginx will automatically redistribute requests to the node.

The following is an example of a health check-based failure recovery configuration:

upstream backend {
    server backend1.example.com:80;
    server backend2.example.com:80;
    check interval=3000 rise=2 fall=3 timeout=1000;
}

server {
    listen 80;
    server_name example.com;

    location / {
        proxy_pass http://backend;
    }
}

In the above configuration, when the availability of a node is restored, Nginx will automatically redistribute requests to the node.

  1. Weight-based failure recovery
    Nginx’s upstream module also provides a weight-based failure recovery mechanism. By setting different weight values ??for nodes, you can control the load distribution ratio. When the availability of a node is restored, the weight value of the node can be adjusted to gradually return it to normal load status.

The following is an example of a weight-based fault recovery configuration:

upstream backend {
    server backend1.example.com:80 weight=5;
    server backend2.example.com:80 weight=1;
}

server {
    listen 80;
    server_name example.com;

    location / {
        proxy_pass http://backend;
    }
}

In the above configuration, the weight of the backend server backend1 is 5, and the weight of the backend server backend2 is 1. When the availability of backend1 is restored, its weight value can be adjusted so that it gradually returns to 5 to achieve failure recovery.

Conclusion:
This article introduces the failover and recovery mechanism in the Nginx load balancing solution and gives specific code examples. By properly configuring failover and recovery mechanisms, system availability and performance can be improved. In actual applications, the appropriate configuration method can be selected according to specific needs and scenarios to achieve the optimal load balancing effect.

The above is the detailed content of Failover and recovery mechanism in Nginx load balancing solution. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to execute php code after writing php code? Several common ways to execute php code How to execute php code after writing php code? Several common ways to execute php code May 23, 2025 pm 08:33 PM

PHP code can be executed in many ways: 1. Use the command line to directly enter the "php file name" to execute the script; 2. Put the file into the document root directory and access it through the browser through the web server; 3. Run it in the IDE and use the built-in debugging tool; 4. Use the online PHP sandbox or code execution platform for testing.

After installing Nginx, the configuration file path and initial settings After installing Nginx, the configuration file path and initial settings May 16, 2025 pm 10:54 PM

Understanding Nginx's configuration file path and initial settings is very important because it is the first step in optimizing and managing a web server. 1) The configuration file path is usually /etc/nginx/nginx.conf. The syntax can be found and tested using the nginx-t command. 2) The initial settings include global settings (such as user, worker_processes) and HTTP settings (such as include, log_format). These settings allow customization and extension according to requirements. Incorrect configuration may lead to performance issues and security vulnerabilities.

How to limit user resources in Linux? How to configure ulimit? How to limit user resources in Linux? How to configure ulimit? May 29, 2025 pm 11:09 PM

Linux system restricts user resources through the ulimit command to prevent excessive use of resources. 1.ulimit is a built-in shell command that can limit the number of file descriptors (-n), memory size (-v), thread count (-u), etc., which are divided into soft limit (current effective value) and hard limit (maximum upper limit). 2. Use the ulimit command directly for temporary modification, such as ulimit-n2048, but it is only valid for the current session. 3. For permanent effect, you need to modify /etc/security/limits.conf and PAM configuration files, and add sessionrequiredpam_limits.so. 4. The systemd service needs to set Lim in the unit file

What are the Debian Nginx configuration skills? What are the Debian Nginx configuration skills? May 29, 2025 pm 11:06 PM

When configuring Nginx on Debian system, the following are some practical tips: The basic structure of the configuration file global settings: Define behavioral parameters that affect the entire Nginx service, such as the number of worker threads and the permissions of running users. Event handling part: Deciding how Nginx deals with network connections is a key configuration for improving performance. HTTP service part: contains a large number of settings related to HTTP service, and can embed multiple servers and location blocks. Core configuration options worker_connections: Define the maximum number of connections that each worker thread can handle, usually set to 1024. multi_accept: Activate the multi-connection reception mode and enhance the ability of concurrent processing. s

NGINX's Purpose: Serving Web Content and More NGINX's Purpose: Serving Web Content and More May 08, 2025 am 12:07 AM

NGINXserveswebcontentandactsasareverseproxy,loadbalancer,andmore.1)ItefficientlyservesstaticcontentlikeHTMLandimages.2)Itfunctionsasareverseproxyandloadbalancer,distributingtrafficacrossservers.3)NGINXenhancesperformancethroughcaching.4)Itofferssecur

What are the SEO optimization techniques for Debian Apache2? What are the SEO optimization techniques for Debian Apache2? May 28, 2025 pm 05:03 PM

DebianApache2's SEO optimization skills cover multiple levels. Here are some key methods: Keyword research: Use tools (such as keyword magic tools) to mine the core and auxiliary keywords of the page. High-quality content creation: produce valuable and original content, and the content needs to be conducted in-depth research to ensure smooth language and clear format. Content layout and structure optimization: Use titles and subtitles to guide reading. Write concise and clear paragraphs and sentences. Use the list to display key information. Combining multimedia such as pictures and videos to enhance expression. The blank design improves the readability of text. Technical level SEO improvement: robots.txt file: Specifies the access rights of search engine crawlers. Accelerate web page loading: optimized with the help of caching mechanism and Apache configuration

Nginx Troubleshooting: Diagnosing and Resolving Common Errors Nginx Troubleshooting: Diagnosing and Resolving Common Errors May 05, 2025 am 12:09 AM

Diagnosis and solutions for common errors of Nginx include: 1. View log files, 2. Adjust configuration files, 3. Optimize performance. By analyzing logs, adjusting timeout settings and optimizing cache and load balancing, errors such as 404, 502, 504 can be effectively resolved to improve website stability and performance.

How to implement automated deployment of Docker on Debian How to implement automated deployment of Docker on Debian May 28, 2025 pm 04:33 PM

Implementing Docker's automated deployment on Debian system can be done in a variety of ways. Here are the detailed steps guide: 1. Install Docker First, make sure your Debian system remains up to date: sudoaptupdatesudoaptupgrade-y Next, install the necessary software packages to support APT access to the repository via HTTPS: sudoaptinstallapt-transport-httpsca-certificatecurlsoftware-properties-common-y Import the official GPG key of Docker: curl-

See all articles