亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Database Redis Detailed explanation of distributed lock implementation in Redis

Detailed explanation of distributed lock implementation in Redis

Jun 21, 2023 am 11:02 AM
redis Distributed lock Implementation details

With the rapid development of mobile Internet and the explosive growth of data volume, distributed systems are becoming more and more popular. In distributed systems, the problem of concurrent operations has become more and more prominent. When multiple threads request shared resources at the same time, these resources need to be locked to ensure data consistency. Distributed locks are one of the effective solutions for implementing concurrent operations in distributed systems. This article will introduce in detail how to use Redis to implement distributed locks.

  1. Redis Basics

Redis is a memory-based key-value storage system that is widely used in distributed systems. As a high-performance NoSQL database, Redis has received widespread attention for its efficient read and write performance and rich data structures. Redis can implement distributed storage based on multiple machines and supports the following data structures:

  • String (string)
  • Hash (hash)
  • List ( list)
  • set(set)
  • ordered set(sorted set)

The operations of Redis are based on these data structures, which are needed to implement distributed locks. A feature of Redis is used: SETNX (SET if Not eXists), that is, the value of the key can only be set when the specified key does not exist. If the key already exists, the SETNX operation returns failure.

  1. Ideas of implementing distributed locks

To implement distributed locks, you first need to clarify the goal:

  • In a distributed environment, When multiple threads request the same resource at the same time, ensure that only one thread can obtain the lock.
  • If a thread has obtained the lock, other threads need to wait for the lock to be released.

In order to achieve the above goals, the following ideas can be adopted:

  • Use the SETNX command of Redis to create a new key as the identification of the lock.
  • If the SETNX command returns successfully, it means that the current thread has obtained the lock.
  • Set the expiration time of the key to avoid deadlock.
  • When a thread completes its task, the lock is released and the key is deleted.
  1. Implementation code example

First, create a Redis connection:

import redis

conn = redis.Redis(host='localhost', port=6379, db=0)

Then, define the functions for acquiring and releasing locks:

def acquire_lock(conn, lockname, acquire_timeout=10, lock_timeout=10):
    identifier = str(uuid.uuid4())
    lockname = "lock:" + lockname
    end = time.time() + acquire_timeout
    while time.time() < end:
        if conn.setnx(lockname, identifier):
            conn.expire(lockname, lock_timeout)
            return identifier
        elif not conn.ttl(lockname):
            conn.expire(lockname, lock_timeout)
        time.sleep(0.001)
    return False

def release_lock(conn, lockname, identifier):
    pipe = conn.pipeline(True)
    lockname = "lock:" + lockname
    while True:
        try:
            pipe.watch(lockname)
            if pipe.get(lockname) == identifier:
                pipe.multi()
                pipe.delete(lockname)
                pipe.execute()
                return True
            pipe.unwatch()
            break
        except redis.exceptions.WatchError:
            pass
    return False

Among them, the acquire_lock function is used to acquire the lock. The parameter description is as follows:

  • conn: Redis connection.
  • lockname: The name of the lock.
  • acquire_timeout: The timeout when acquiring the lock, the default is 10 seconds.
  • lock_timeout: The expiration time of the lock, the default is 10 seconds.

This function first generates a random identifier, then tries to acquire the lock every 0.001 seconds, and sets the expiration time. If the lock is not acquired within the specified timeout, False is returned.

The release_lock function is used to release the lock. The parameter description is as follows:

  • conn: Redis connection.
  • lockname: The name of the lock.
  • identifier: The identifier returned when acquiring the lock.

This function first uses the WATCH command to monitor the lock. If the value of the lock is the same as the identifier, it uses the MULTI command to delete the lock and perform the operation. Otherwise, terminate monitoring and return False.

Finally, the distributed lock function can be realized using the acquire_lock and release_lock functions. The sample code is as follows:

import time
import uuid

def do_task():
    print("Task started...")
    time.sleep(5)
    print("Task finished")

def main():
    lockname = "mylock"
    identifier = acquire_lock(conn, lockname)
    if not identifier:
        print("Failed to obtain lock")
        return
    try:
        do_task()
    finally:
        release_lock(conn, lockname, identifier)

if __name__ == '__main__':
    main()

In this sample code, the acquire_lock function is used to acquire the lock, and the release_lock function is called to release the lock after executing the task.

  1. Summary

Distributed lock is a technology widely used in distributed systems, which can effectively solve the problem of data consistency under concurrent operations. In this article, we introduce in detail how to use Redis to implement distributed locks. By using Redis's SETNX command and expiration time settings, as well as WATCH and MULTI commands, you can implement the distributed lock function.

The above is the detailed content of Detailed explanation of distributed lock implementation in Redis. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Recommended Laravel's best expansion packs: 2024 essential tools Recommended Laravel's best expansion packs: 2024 essential tools Apr 30, 2025 pm 02:18 PM

The essential Laravel extension packages for 2024 include: 1. LaravelDebugbar, used to monitor and debug code; 2. LaravelTelescope, providing detailed application monitoring; 3. LaravelHorizon, managing Redis queue tasks. These expansion packs can improve development efficiency and application performance.

Laravel environment construction and basic configuration (Windows/Mac/Linux) Laravel environment construction and basic configuration (Windows/Mac/Linux) Apr 30, 2025 pm 02:27 PM

The steps to build a Laravel environment on different operating systems are as follows: 1.Windows: Use XAMPP to install PHP and Composer, configure environment variables, and install Laravel. 2.Mac: Use Homebrew to install PHP and Composer and install Laravel. 3.Linux: Use Ubuntu to update the system, install PHP and Composer, and install Laravel. The specific commands and paths of each system are different, but the core steps are consistent to ensure the smooth construction of the Laravel development environment.

Redis: A Comparison to Traditional Database Servers Redis: A Comparison to Traditional Database Servers May 07, 2025 am 12:09 AM

Redis is superior to traditional databases in high concurrency and low latency scenarios, but is not suitable for complex queries and transaction processing. 1.Redis uses memory storage, fast read and write speed, suitable for high concurrency and low latency requirements. 2. Traditional databases are based on disk, support complex queries and transaction processing, and have strong data consistency and persistence. 3. Redis is suitable as a supplement or substitute for traditional databases, but it needs to be selected according to specific business needs.

How to limit user resources in Linux? How to configure ulimit? How to limit user resources in Linux? How to configure ulimit? May 29, 2025 pm 11:09 PM

Linux system restricts user resources through the ulimit command to prevent excessive use of resources. 1.ulimit is a built-in shell command that can limit the number of file descriptors (-n), memory size (-v), thread count (-u), etc., which are divided into soft limit (current effective value) and hard limit (maximum upper limit). 2. Use the ulimit command directly for temporary modification, such as ulimit-n2048, but it is only valid for the current session. 3. For permanent effect, you need to modify /etc/security/limits.conf and PAM configuration files, and add sessionrequiredpam_limits.so. 4. The systemd service needs to set Lim in the unit file

Is Redis Primarily a Database? Is Redis Primarily a Database? May 05, 2025 am 12:07 AM

Redis is primarily a database, but it is more than just a database. 1. As a database, Redis supports persistence and is suitable for high-performance needs. 2. As a cache, Redis improves application response speed. 3. As a message broker, Redis supports publish-subscribe mode, suitable for real-time communication.

Redis: Beyond SQL - The NoSQL Perspective Redis: Beyond SQL - The NoSQL Perspective May 08, 2025 am 12:25 AM

Redis goes beyond SQL databases because of its high performance and flexibility. 1) Redis achieves extremely fast read and write speed through memory storage. 2) It supports a variety of data structures, such as lists and collections, suitable for complex data processing. 3) Single-threaded model simplifies development, but high concurrency may become a bottleneck.

Steps and examples for building a dynamic PHP website with PhpStudy Steps and examples for building a dynamic PHP website with PhpStudy May 16, 2025 pm 07:54 PM

The steps to build a dynamic PHP website using PhpStudy include: 1. Install PhpStudy and start the service; 2. Configure the website root directory and database connection; 3. Write PHP scripts to generate dynamic content; 4. Debug and optimize website performance. Through these steps, you can build a fully functional dynamic PHP website from scratch.

Redis: Unveiling Its Purpose and Key Applications Redis: Unveiling Its Purpose and Key Applications May 03, 2025 am 12:11 AM

Redisisanopen-source,in-memorydatastructurestoreusedasadatabase,cache,andmessagebroker,excellinginspeedandversatility.Itiswidelyusedforcaching,real-timeanalytics,sessionmanagement,andleaderboardsduetoitssupportforvariousdatastructuresandfastdataacces

See all articles