Here’s a couple of lessons I’ve learned about how not to build React components. These are things I’ve come across over the past couple of months and thought they might be of interest to you if you’re working on a design system, especially one with a bunch of legacy technical decisions and a lot of tech debt under the hood.
Lesson 1: Avoid child components as much as you can
One thing about working on a big design system with lots of components is that the following pattern eventually starts to become problematic real quick:
<card> <card.header>Title</card.header> <card.body><p>This is some content</p></card.body> </card>
The problematic parts are those child components, Card.Body and Card.Header. This example isn’t terrible because things are relatively simple — it’s when components get more complex that things can get bonkers. For example, each child component can have a whole series of complex props that interfere with the others.
One of my biggest pain points is with our Form components. Take this:
I’m simplifying things considerably, of course, but every time an engineer wants to place two buttons next to each other, they’d import Form.Actions, even if there wasn’t a Form on the page. This meant that everything inside the Form component gets imported and that’s ultimately bad for performance. It just so happens to be bad system design implementation as well.
This also makes things extra difficult when documenting components because now you’ll have to ensure that each of these child components are documented too.
So instead of making Form.Actions a child component, we should’ve made it a brand new component, simply: FormActions (or perhaps something with a better name like ButtonGroup). That way, we don’t have to import Form all the time and we can keep layout-based components separate from the others.
I’ve learned my lesson. From here on out I’ll be avoiding child components altogether where I can.
Lesson 2: Make sure your props don’t conflict with one another
Mandy Michael wrote a great piece about how props can bump into one another and cause all sorts of confusing conflicts, like this TypeScript example:
interface Props { hideMedia?: boolean mediaIsEdgeToEdge?: boolean mediaFullHeight?: boolean videoInline?: boolean }
Mandy writes:
The purpose of these props are to change the way the image or video is rendered within the card or if the media is rendered at all. The problem with defining them separately is that you end up with a number of flags which toggle component features, many of which are mutually exclusive. For example, you can’t have an image that fills the margins if it’s also hidden.
This was definitely a problem for a lot of the components we inherited in my team’s design systems. There were a bunch of components where boolean props would make a component behave in all sorts of odd and unexpected ways. We even had all sorts of bugs pop up in our Card component during development because the engineers wouldn’t know which props to turn on and turn off for any given effect!
Mandy offers the following solution:
type MediaMode = 'hidden'| 'edgeToEdge' | 'fullHeight' interface Props { mediaMode: 'hidden'| 'edgeToEdge' | 'fullHeight' }
In short: if we combine all of these nascent options together then we have a much cleaner API that’s easily extendable and is less likely to cause confusion in the future.
That’s it! I just wanted to make a quick note about those two lessons. Here’s my question for you: What have you learned when it comes to making components or working on design systems?
The above is the detailed content of Two Lessons I Learned From Making React Components. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

There are three ways to create a CSS loading rotator: 1. Use the basic rotator of borders to achieve simple animation through HTML and CSS; 2. Use a custom rotator of multiple points to achieve the jump effect through different delay times; 3. Add a rotator in the button and switch classes through JavaScript to display the loading status. Each approach emphasizes the importance of design details such as color, size, accessibility and performance optimization to enhance the user experience.

To deal with CSS browser compatibility and prefix issues, you need to understand the differences in browser support and use vendor prefixes reasonably. 1. Understand common problems such as Flexbox and Grid support, position:sticky invalid, and animation performance is different; 2. Check CanIuse confirmation feature support status; 3. Correctly use -webkit-, -moz-, -ms-, -o- and other manufacturer prefixes; 4. It is recommended to use Autoprefixer to automatically add prefixes; 5. Install PostCSS and configure browserslist to specify the target browser; 6. Automatically handle compatibility during construction; 7. Modernizr detection features can be used for old projects; 8. No need to pursue consistency of all browsers,

Themaindifferencesbetweendisplay:inline,block,andinline-blockinHTML/CSSarelayoutbehavior,spaceusage,andstylingcontrol.1.Inlineelementsflowwithtext,don’tstartonnewlines,ignorewidth/height,andonlyapplyhorizontalpadding/margins—idealforinlinetextstyling

Use the clip-path attribute of CSS to crop elements into custom shapes, such as triangles, circular notches, polygons, etc., without relying on pictures or SVGs. Its advantages include: 1. Supports a variety of basic shapes such as circle, ellipse, polygon, etc.; 2. Responsive adjustment and adaptable to mobile terminals; 3. Easy to animation, and can be combined with hover or JavaScript to achieve dynamic effects; 4. It does not affect the layout flow, and only crops the display area. Common usages are such as circular clip-path:circle (50pxatcenter) and triangle clip-path:polygon (50%0%, 100 0%, 0 0%). Notice

Setting the style of links you have visited can improve the user experience, especially in content-intensive websites to help users navigate better. 1. Use CSS's: visited pseudo-class to define the style of the visited link, such as color changes; 2. Note that the browser only allows modification of some attributes due to privacy restrictions; 3. The color selection should be coordinated with the overall style to avoid abruptness; 4. The mobile terminal may not display this effect, and it is recommended to combine it with other visual prompts such as icon auxiliary logos.

To create responsive images using CSS, it can be mainly achieved through the following methods: 1. Use max-width:100% and height:auto to allow the image to adapt to the container width while maintaining the proportion; 2. Use HTML's srcset and sizes attributes to intelligently load the image sources adapted to different screens; 3. Use object-fit and object-position to control image cropping and focus display. Together, these methods ensure that the images are presented clearly and beautifully on different devices.

The choice of CSS units depends on design requirements and responsive requirements. 1.px is used for fixed size, suitable for precise control but lack of elasticity; 2.em is a relative unit, which is easily caused by the influence of the parent element, while rem is more stable based on the root element and is suitable for global scaling; 3.vw/vh is based on the viewport size, suitable for responsive design, but attention should be paid to the performance under extreme screens; 4. When choosing, it should be determined based on whether responsive adjustments, element hierarchy relationships and viewport dependence. Reasonable use can improve layout flexibility and maintenance.

Different browsers have differences in CSS parsing, resulting in inconsistent display effects, mainly including the default style difference, box model calculation method, Flexbox and Grid layout support level, and inconsistent behavior of certain CSS attributes. 1. The default style processing is inconsistent. The solution is to use CSSReset or Normalize.css to unify the initial style; 2. The box model calculation method of the old version of IE is different. It is recommended to use box-sizing:border-box in a unified manner; 3. Flexbox and Grid perform differently in edge cases or in old versions. More tests and use Autoprefixer; 4. Some CSS attribute behaviors are inconsistent. CanIuse must be consulted and downgraded.
