亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Technology peripherals AI Hugging Face Image Classification: A Comprehensive Guide With Examples

Hugging Face Image Classification: A Comprehensive Guide With Examples

Mar 07, 2025 am 09:34 AM

Harnessing Hugging Face for Image Classification: A Comprehensive Guide

Image classification, a cornerstone of AI and machine learning, finds applications across diverse fields, from facial recognition to medical imaging. Hugging Face emerges as a powerful platform for this task, particularly for those familiar with natural language processing (NLP) and increasingly, computer vision. This guide details using Hugging Face for image classification, catering to both beginners and experienced practitioners.

Understanding Image Classification and Hugging Face's Advantages

Image classification involves categorizing images into predefined classes using algorithms that analyze visual content and predict categories based on learned patterns. Convolutional Neural Networks (CNNs) are the standard approach due to their pattern-recognition capabilities. For a deeper dive into CNNs, refer to our article "An Introduction to Convolutional Neural Networks (CNNs)." Our "Classification in Machine Learning: An Introduction" article provides a broader understanding of classification algorithms.

Hugging Face offers several advantages:

Hugging Face Image Classification: A Comprehensive Guide With Examples

Key benefits of using Hugging Face for image classification

  • Accessibility: Intuitive APIs and comprehensive documentation cater to all skill levels.
  • Pre-trained Models: A vast repository of pre-trained models allows for efficient fine-tuning on custom datasets, minimizing training time and computational resources. Users can train and deploy their own models.
  • Community & Support: A vibrant community provides invaluable support and troubleshooting assistance.

Hugging Face also simplifies model deployment across major cloud platforms (AWS, Azure, Google Cloud Platform) with various inference options.

Hugging Face Image Classification: A Comprehensive Guide With Examples

Model deployment options across cloud platforms

Data Preparation and Preprocessing

This guide uses the Hugging Face "beans" dataset for demonstration. After loading, we'll visualize the data before preprocessing. The accompanying Google Colab notebook provides the code. The code is inspired by Hugging Face's official documentation.

Library Requirements:

Install necessary libraries using pip:

pip -q install datasets
pip -q install transformers=='4.29.0'
pip -q install tensorflow=='2.15' 
pip -q install evaluate
pip -q install --upgrade accelerate

Restart the kernel after installation. Import required libraries:

import torch
import torchvision
import numpy as np
import evaluate
from datasets import load_dataset
from huggingface_hub import notebook_login
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from transformers import DefaultDataCollator
from transformers import AutoImageProcessor
from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
import matplotlib.pyplot as plt

Data Loading and Organization:

Load the dataset:

pip -q install datasets
pip -q install transformers=='4.29.0'
pip -q install tensorflow=='2.15' 
pip -q install evaluate
pip -q install --upgrade accelerate

The dataset contains 1034 images, each with 'image_file_path', 'image' (PIL object), and 'labels' (0: angular_leaf_spot, 1: bean_rust, 2: healthy).

A helper function visualizes random images:

import torch
import torchvision
import numpy as np
import evaluate
from datasets import load_dataset
from huggingface_hub import notebook_login
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from transformers import DefaultDataCollator
from transformers import AutoImageProcessor
from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
import matplotlib.pyplot as plt

Visualize six random images:

beans_train = load_dataset("beans", split="train")

Hugging Face Image Classification: A Comprehensive Guide With Examples

Sample images from the beans dataset

Data Preprocessing:

Split the dataset (80% train, 20% validation):

labels_names = {0: "angular_leaf_spot", 1: "bean_rust", 2: "healthy"}

def display_random_images(dataset, num_images=4):
   # ... (function code as in original input) ...

Create label mappings:

display_random_images(beans_train, num_images=6)

Model Loading and Fine-tuning

Load the pre-trained ViT model:

beans_train = beans_train.train_test_split(test_size=0.2)

The code loads the pre-trained model, defines transformations (resizing, normalization), and prepares the dataset for training. The accuracy metric is defined for evaluation.

Log in to Hugging Face:

labels = beans_train["train"].features["labels"].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
   label2id[label] = str(i)
   id2label[str(i)] = label

(Follow on-screen instructions)

Configure and initiate training:

checkpoint = "google/vit-base-patch16-224-in21k"
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
# ... (rest of the preprocessing code as in original input) ...

(Training results as shown in the original input)

Model Deployment and Integration

Push the trained model to the Hugging Face Hub:

notebook_login()

The model can then be accessed and used via:

  1. Hugging Face Portal: Directly upload images for prediction.
  2. Transformers Library: Use the model within your Python code.
  3. REST API: Utilize the provided API endpoint for predictions. Example using the API:
training_args = TrainingArguments(
    # ... (training arguments as in original input) ...
)

trainer = Trainer(
    # ... (trainer configuration as in original input) ...
)

trainer.train()

Conclusion and Further Resources

This guide provides a comprehensive walkthrough of image classification using Hugging Face. Further learning resources include:

  • "An Introduction to Using Transformers and Hugging Face"
  • "Image Processing with Python" skill track
  • "What is Image Recognition?" article

This guide empowers users of all levels to leverage Hugging Face for their image classification projects.

The above is the detailed content of Hugging Face Image Classification: A Comprehensive Guide With Examples. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1488
72
Kimi K2: The Most Powerful Open-Source Agentic Model Kimi K2: The Most Powerful Open-Source Agentic Model Jul 12, 2025 am 09:16 AM

Remember the flood of open-source Chinese models that disrupted the GenAI industry earlier this year? While DeepSeek took most of the headlines, Kimi K1.5 was one of the prominent names in the list. And the model was quite cool.

Grok 4 vs Claude 4: Which is Better? Grok 4 vs Claude 4: Which is Better? Jul 12, 2025 am 09:37 AM

By mid-2025, the AI “arms race” is heating up, and xAI and Anthropic have both released their flagship models, Grok 4 and Claude 4. These two models are at opposite ends of the design philosophy and deployment platform, yet they

10 Amazing Humanoid Robots Already Walking Among Us Today 10 Amazing Humanoid Robots Already Walking Among Us Today Jul 16, 2025 am 11:12 AM

But we probably won’t have to wait even 10 years to see one. In fact, what could be considered the first wave of truly useful, human-like machines is already here. Recent years have seen a number of prototypes and production models stepping out of t

Context Engineering is the 'New' Prompt Engineering Context Engineering is the 'New' Prompt Engineering Jul 12, 2025 am 09:33 AM

Until the previous year, prompt engineering was regarded a crucial skill for interacting with large language models (LLMs). Recently, however, LLMs have significantly advanced in their reasoning and comprehension abilities. Naturally, our expectation

6 Tasks Manus AI Can Do in Minutes 6 Tasks Manus AI Can Do in Minutes Jul 06, 2025 am 09:29 AM

I am sure you must know about the general AI agent, Manus. It was launched a few months ago, and over the months, they have added several new features to their system. Now, you can generate videos, create websites, and do much mo

Build a LangChain Fitness Coach: Your AI Personal Trainer Build a LangChain Fitness Coach: Your AI Personal Trainer Jul 05, 2025 am 09:06 AM

Many individuals hit the gym with passion and believe they are on the right path to achieving their fitness goals. But the results aren’t there due to poor diet planning and a lack of direction. Hiring a personal trainer al

Leia's Immersity Mobile App Brings 3D Depth To Everyday Photos Leia's Immersity Mobile App Brings 3D Depth To Everyday Photos Jul 09, 2025 am 11:17 AM

Built on Leia’s proprietary Neural Depth Engine, the app processes still images and adds natural depth along with simulated motion—such as pans, zooms, and parallax effects—to create short video reels that give the impression of stepping into the sce

These AI Models Didn't Learn Language, They Learned Strategy These AI Models Didn't Learn Language, They Learned Strategy Jul 09, 2025 am 11:16 AM

A new study from researchers at King’s College London and the University of Oxford shares results of what happened when OpenAI, Google and Anthropic were thrown together in a cutthroat competition based on the iterated prisoner's dilemma. This was no

See all articles