The Linux Command Line
The Linux Command Line
A comprehensive guide to mastering the Linux command line, from beginner to advanced.
Linux for Beginners
Linux for Beginners by Jason Cannon
A great starting point for those new to Linux, covering fundamental commands and concepts.
Linux Commands Handbook
Linux Commands Handbook
A handy reference for common Linux commands and their practical uses.
Linux Kernel in a Nutshell
Linux Kernel in a Nutshell
An in-depth guide to understanding the Linux kernel and its components.
Linux from Scratch
Linux from Scratch
Learn to build your own Linux system from the ground up.
Bash Guide for Beginners
Bash Guide for Beginners
A beginner's guide to learning Bash scripting on Linux.
The Korn Shell User and Programming Manual
Korn Shell Manual
A detailed manual for programming with the Korn shell.
Ten Steps to Linux Survival
Ten Steps to Linux Survival
A step-by-step guide to surviving and thriving in a Linux environment.
Linux 101 Hacks
Linux 101 Hacks
Practical hacks for mastering Linux basics and productivity.
Sams Teach Yourself Shell Programming in 24 Hours
Sams Teach Yourself Shell Programming
A quick course on shell programming with hands-on examples.
97 Things Every Cloud Engineer Should Know
97 Things Every Cloud Engineer Should Know
A collection of tips and best practices for cloud engineers.
Azure for Architects
Azure for Architects
A guide for designing cloud solutions on Azure for enterprise architects.
Cloud Design Patterns
Cloud Design Patterns
A reference for designing scalable and reliable cloud applications.
Generative AI on AWS
Generative AI on AWS
Learn about building generative AI models on AWS infrastructure.
Migrating Applications to the Cloud
Migrating Applications to the Cloud
A guide for migrating applications to the cloud effectively.
A Practical Guide to Cloud Migration
A Practical Guide to Cloud Migration
Best practices and strategies for cloud migration.
CI/CD with Docker and Kubernetes
CI/CD with Docker and Kubernetes
Learn how to implement CI/CD pipelines with Docker and Kubernetes.
The Modern DevOps Lifecycle
The Modern DevOps Lifecycle
A guide to mastering the full DevOps lifecycle using modern tools.
Getting GitOps
Getting GitOps
Learn how GitOps can streamline software delivery with Kubernetes.
The Path to GitOps
The Path to GitOps
A roadmap to adopting GitOps practices for infrastructure management.
GitOps Cookbook
GitOps Cookbook
Practical GitOps recipes for managing cloud-native applications.
Think Python (v2)
Think Python (v2)
An introduction to Python programming with a focus on concepts and problem-solving.
Think Java
Think Java
A beginner-friendly Java programming guide with exercises and examples.
Effective Modern C
Effective Modern C
A detailed book on mastering modern C features and best practices.
Speaking JavaScript
Speaking JavaScript
A comprehensive guide to learning JavaScript and its features.
Efficient R Programming
Efficient R Programming
Tips and techniques for writing efficient R code and improving performance.
Developing on AWS with C#
Developing on AWS with C#
A guide to using C# for cloud development on AWS.
Rust Atomics and Locks
Rust Atomics and Locks
A deep dive into concurrency in Rust with atomics and locks.
The above is the detailed content of Free Books Python, Linux and Programming. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Python's magicmethods (or dunder methods) are special methods used to define the behavior of objects, which start and end with a double underscore. 1. They enable objects to respond to built-in operations, such as addition, comparison, string representation, etc.; 2. Common use cases include object initialization and representation (__init__, __repr__, __str__), arithmetic operations (__add__, __sub__, __mul__) and comparison operations (__eq__, ___lt__); 3. When using it, make sure that their behavior meets expectations. For example, __repr__ should return expressions of refactorable objects, and arithmetic methods should return new instances; 4. Overuse or confusing things should be avoided.

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

@property is a decorator in Python used to masquerade methods as properties, allowing logical judgments or dynamic calculation of values ??when accessing properties. 1. It defines the getter method through the @property decorator, so that the outside calls the method like accessing attributes; 2. It can control the assignment behavior with .setter, such as the validity of the check value, if the .setter is not defined, it is read-only attribute; 3. It is suitable for scenes such as property assignment verification, dynamic generation of attribute values, and hiding internal implementation details; 4. When using it, please note that the attribute name is different from the private variable name to avoid dead loops, and is suitable for lightweight operations; 5. In the example, the Circle class restricts radius non-negative, and the Person class dynamically generates full_name attribute
