亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Java javaTutorial Understanding the Factory Method Pattern

Understanding the Factory Method Pattern

Jan 05, 2025 am 10:49 AM

Understanding the Factory Method Pattern

Introduction

Hi everyone, I am writing this post to share my knowledge as I continue learning about design patterns. Today, I will present the Factory Method Pattern, which is a design pattern commonly used in real-world applications. If there are any mistakes in my post, please feel free to comment below, and I will gladly fix and update it.

Factory method pattern provides an interface for creating objects in a superclass, but allow subclasses to alter the type of objects that will be created.

Problem

Assume you have a bank application, and you’re building a feature for transferring money through various methods like bank transfer, paypal transfer,…

Before using the Factory Method pattern, let’s examine the scenario without it.

I will give an example implemented in Java.

Situation: Person1 sends money to Person2 using a transfer method (Bank Transfer or PayPal Transfer).

Folder structure:

problem/
├─ BankApp.java
├─ service/
│  ├─ PaypalTransferPayment.java
│  ├─ BankTransferPayment.java
├─ data/
│  ├─ Person.java

In the main application, create two persons with default amounts of money.

package problem;

import problem.data.Person;

public class BankApp {
    public static void main(String[] args) {
        Person person1 = new Person("John", 1000);
        Person person2 = new Person("Jane", 500);
    }
}

Create BankTransferPayment and PaypalTransferPayment classes.

package problem.service;

import problem.data.Person;

public class BankTransferPayment {
    public void processPayment(Person fromAccount, Person toAccount, float amount) {
        fromAccount.withdraw(amount);
        toAccount.deposit(amount);
        System.out.println("Bank transfer payment success.");
    }
}
package problem.service;

import problem.data.Person;

public class PaypalPayment {
    public void processPayment(Person fromAccount, Person toAccount, float amount) {
        fromAccount.withdraw(amount);
        toAccount.deposit(amount);
        System.out.println("Paypal transfer payment success.");
    }
}

Implement the logic in the main function.

package problem;

import problem.data.Person;
import problem.service.BankTransferPayment;
import problem.service.PaypalPayment;

public class BankApp {
    public static void main(String[] args) {
        Person person1 = new Person("John", 1000);
        Person person2 = new Person("Jane", 500);

        String paymentMethod = "BANK_TRANSFER";

        if (paymentMethod.equals("BANK_TRANSFER")) {
            BankTransferPayment bankTransferPayment = new BankTransferPayment();
            bankTransferPayment.processPayment(person1, person2, 100);

            System.out.println("===Method bank_transfer===");
            System.out.println(person1.getName() + " has " + person1.getAmount());
            System.out.println(person2.getName() + " has " + person2.getAmount());
        } else if (paymentMethod.equals("PAYPAL")) {
            PaypalPayment paypalPayment = new PaypalPayment();
            paypalPayment.processPayment(person1, person2, 100);

            System.out.println("===Method paypal===");
            System.out.println(person1.getName() + " has " + person1.getAmount());
            System.out.println(person2.getName() + " has " + person2.getAmount());
        }
    }
}

Problems with the current implementation:

  1. Repetitive code: The processPayment method logic is repeated for every payment method.
  2. Tightly coupled code: The application needs to create the payment method objects itself, making it hard to extend the application.
  3. Scalability issues: If new payment methods are added, the source code becomes more complex and harder to maintain.

Solution

The solution to the above situation is to use factory method pattern. So, how do we apply it ?

In the example above:

  1. Each if-else block calls the processPayment method, which leads to repetitive code.
  2. Objects are created based on the payment type condition, making the code messy with excessive if-else statements.

To solve these issues, the Factory Method pattern will be implemented step by step.

Folder structure (solution):

solution/
├─ BankApp.java
├─ service/
│  ├─ payments/
│  │  ├─ Payment.java
│  │  ├─ PaymentFactory.java
│  │  ├─ BankTransferPayment.java
│  │  ├─ PaypalTransferPayment.java
├─ data/
│  ├─ Person.java

Step 1: Create Payment interface, declares common method processPayment

package solution.service.payments;

import solution.data.Person;

// Step 1: Create an interface for the payment
public interface Payment {
    void processPayment(Person fromAccount, Person toAccount,float amount);
}

Step 2: Create BankTransferPayment and PaypalTransferPayment classes implement Payment interface.

package solution.service.payments;

import solution.data.Person;

// Step 2: Create a class that implements the Payment interface
public class BankTransferPayment implements Payment {
    @Override
    public void processPayment(Person fromAccount, Person toAccount, float amount) {
        fromAccount.withdraw(amount);
        toAccount.deposit(amount);
        System.out.println("Bank transfer payment success.");
    }
}
package solution.service.payments;

import solution.data.Person;

public class PaypalPayment implements Payment{
    @Override
    public void processPayment(Person fromAccount, Person toAccount, float amount) {
        fromAccount.withdraw(amount);
        toAccount.deposit(amount);
        System.out.println("Paypal transfer payment success.");
    }
}

Step 3: Create PaymentFactory class. This class is responsible for creating objects based on payment type condition.

package solution.service.payments;

public class PaymentFactory {
    public Payment createPayment(String paymentType) {
        if (paymentType == null) {
            return null;
        }
        if (paymentType.equalsIgnoreCase("BANK_TRANSFER")) {
            return new BankTransferPayment();
        } else if (paymentType.equalsIgnoreCase("PAYPAL")) {
            return new PaypalPayment();
        }
        return null;
    }
}

Step 4: Use the Factory in the Main Application.

Modify the main function to use the Factory Method pattern.

problem/
├─ BankApp.java
├─ service/
│  ├─ PaypalTransferPayment.java
│  ├─ BankTransferPayment.java
├─ data/
│  ├─ Person.java

Benefits of Using the Factory Method Pattern

  • The code is cleaner and more structured.
  • Repetitive calls to processPayment in multiple if-else blocks are eliminated.
  • Object creation is delegated to the factory, improving maintainability.

Bonus

To make the PaymentFactory class comply with the Open/Closed Principle (from SOLID principles), you can implement a dynamic registration mechanism using the Strategy Pattern.

Updated PaymentFactory.java:

package problem;

import problem.data.Person;

public class BankApp {
    public static void main(String[] args) {
        Person person1 = new Person("John", 1000);
        Person person2 = new Person("Jane", 500);
    }
}

Using the Updated Factory in the Main Application.

package problem.service;

import problem.data.Person;

public class BankTransferPayment {
    public void processPayment(Person fromAccount, Person toAccount, float amount) {
        fromAccount.withdraw(amount);
        toAccount.deposit(amount);
        System.out.println("Bank transfer payment success.");
    }
}

By applying this approach, the code adheres to the Open/Closed Principle, enabling the addition of new payment methods without modifying the PaymentFactory logic.

I hope this post will be helpful to you.

References:

guru-design-patterns

The above is the detailed content of Understanding the Factory Method Pattern. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Differences Between Callable and Runnable in Java Differences Between Callable and Runnable in Java Jul 04, 2025 am 02:50 AM

There are three main differences between Callable and Runnable in Java. First, the callable method can return the result, suitable for tasks that need to return values, such as Callable; while the run() method of Runnable has no return value, suitable for tasks that do not need to return, such as logging. Second, Callable allows to throw checked exceptions to facilitate error transmission; while Runnable must handle exceptions internally. Third, Runnable can be directly passed to Thread or ExecutorService, while Callable can only be submitted to ExecutorService and returns the Future object to

Asynchronous Programming Techniques in Modern Java Asynchronous Programming Techniques in Modern Java Jul 07, 2025 am 02:24 AM

Java supports asynchronous programming including the use of CompletableFuture, responsive streams (such as ProjectReactor), and virtual threads in Java19. 1.CompletableFuture improves code readability and maintenance through chain calls, and supports task orchestration and exception handling; 2. ProjectReactor provides Mono and Flux types to implement responsive programming, with backpressure mechanism and rich operators; 3. Virtual threads reduce concurrency costs, are suitable for I/O-intensive tasks, and are lighter and easier to expand than traditional platform threads. Each method has applicable scenarios, and appropriate tools should be selected according to your needs and mixed models should be avoided to maintain simplicity

Understanding Java NIO and Its Advantages Understanding Java NIO and Its Advantages Jul 08, 2025 am 02:55 AM

JavaNIO is a new IOAPI introduced by Java 1.4. 1) is aimed at buffers and channels, 2) contains Buffer, Channel and Selector core components, 3) supports non-blocking mode, and 4) handles concurrent connections more efficiently than traditional IO. Its advantages are reflected in: 1) Non-blocking IO reduces thread overhead, 2) Buffer improves data transmission efficiency, 3) Selector realizes multiplexing, and 4) Memory mapping speeds up file reading and writing. Note when using: 1) The flip/clear operation of the Buffer is easy to be confused, 2) Incomplete data needs to be processed manually without blocking, 3) Selector registration must be canceled in time, 4) NIO is not suitable for all scenarios.

Best Practices for Using Enums in Java Best Practices for Using Enums in Java Jul 07, 2025 am 02:35 AM

In Java, enums are suitable for representing fixed constant sets. Best practices include: 1. Use enum to represent fixed state or options to improve type safety and readability; 2. Add properties and methods to enums to enhance flexibility, such as defining fields, constructors, helper methods, etc.; 3. Use EnumMap and EnumSet to improve performance and type safety because they are more efficient based on arrays; 4. Avoid abuse of enums, such as dynamic values, frequent changes or complex logic scenarios, which should be replaced by other methods. Correct use of enum can improve code quality and reduce errors, but you need to pay attention to its applicable boundaries.

How Java ClassLoaders Work Internally How Java ClassLoaders Work Internally Jul 06, 2025 am 02:53 AM

Java's class loading mechanism is implemented through ClassLoader, and its core workflow is divided into three stages: loading, linking and initialization. During the loading phase, ClassLoader dynamically reads the bytecode of the class and creates Class objects; links include verifying the correctness of the class, allocating memory to static variables, and parsing symbol references; initialization performs static code blocks and static variable assignments. Class loading adopts the parent delegation model, and prioritizes the parent class loader to find classes, and try Bootstrap, Extension, and ApplicationClassLoader in turn to ensure that the core class library is safe and avoids duplicate loading. Developers can customize ClassLoader, such as URLClassL

Exploring Different Synchronization Mechanisms in Java Exploring Different Synchronization Mechanisms in Java Jul 04, 2025 am 02:53 AM

Javaprovidesmultiplesynchronizationtoolsforthreadsafety.1.synchronizedblocksensuremutualexclusionbylockingmethodsorspecificcodesections.2.ReentrantLockoffersadvancedcontrol,includingtryLockandfairnesspolicies.3.Conditionvariablesallowthreadstowaitfor

Handling Common Java Exceptions Effectively Handling Common Java Exceptions Effectively Jul 05, 2025 am 02:35 AM

The key to Java exception handling is to distinguish between checked and unchecked exceptions and use try-catch, finally and logging reasonably. 1. Checked exceptions such as IOException need to be forced to handle, which is suitable for expected external problems; 2. Unchecked exceptions such as NullPointerException are usually caused by program logic errors and are runtime errors; 3. When catching exceptions, they should be specific and clear to avoid general capture of Exception; 4. It is recommended to use try-with-resources to automatically close resources to reduce manual cleaning of code; 5. In exception handling, detailed information should be recorded in combination with log frameworks to facilitate later

How does a HashMap work internally in Java? How does a HashMap work internally in Java? Jul 15, 2025 am 03:10 AM

HashMap implements key-value pair storage through hash tables in Java, and its core lies in quickly positioning data locations. 1. First use the hashCode() method of the key to generate a hash value and convert it into an array index through bit operations; 2. Different objects may generate the same hash value, resulting in conflicts. At this time, the node is mounted in the form of a linked list. After JDK8, the linked list is too long (default length 8) and it will be converted to a red and black tree to improve efficiency; 3. When using a custom class as a key, the equals() and hashCode() methods must be rewritten; 4. HashMap dynamically expands capacity. When the number of elements exceeds the capacity and multiplies by the load factor (default 0.75), expand and rehash; 5. HashMap is not thread-safe, and Concu should be used in multithreaded

See all articles