亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Backend Development Python Tutorial Uncovering Django Bottlenecks: An In-Depth Analysis with Django-Silk

Uncovering Django Bottlenecks: An In-Depth Analysis with Django-Silk

Dec 22, 2024 am 06:37 AM

Débusquer les Goulots d

Why Performance Matters (And How Django-Silk Becomes Your Best Ally)

In the Django ecosystem, performance is not a luxury — it's an absolute necessity. Modern web applications run at hundreds or even thousands of requests per second, and every millisecond counts.

The Art of Subtle Profiling

Django-Silk is not just a profiling tool, it is a microscope for your application architecture. It allows you to precisely dissect each HTTP request, each database request, with surgical granularity.

Concrete Use Cases

1. Identifying Slow Queries

# Avant l'optimisation
def liste_utilisateurs_complexe(request):
    # Requête potentiellement non optimisée
    utilisateurs = Utilisateur.objects.select_related('profile') \
                   .prefetch_related('commandes') \
                   .filter(actif=True)[:1000]

With Django-Silk, you will immediately be able to visualize:

  • Execution time
  • Number of SQL queries generated
  • Memory load

2. N 1 Query Problem - A Developer's Nightmare

# Scénario classique de problème N+1
for utilisateur in Utilisateur.objects.all():
    # Chaque itération génère une requête
    print(utilisateur.commandes.count())

Django-Silk will highlight this type of inefficient pattern, allowing you to quickly refactor.

3. Middleware Analysis and Processing Time

MIDDLEWARE = [
    'silk.middleware.SilkMiddleware',  # Ajout stratégique
    'django.middleware.security.SecurityMiddleware',
    # Autres middlewares...
]

Quick Installation

pip install django-silk

Minimum configuration:

INSTALLED_APPS = [
    # Autres apps
    'silk',
]

MIDDLEWARE = [
    'silk.middleware.SilkMiddleware',
    # Autres middlewares
]

Killer features?

  1. Detailed Profiling

    • Execution time per query
    • Analysis of SQL queries
    • Visualizing dependencies
  2. Intuitive Interface

    • Web dashboard
    • Profile exports
    • Advanced filters
  3. Minimum Overload

    • Negligible performance overhead
    • Contextual activation/deactivation

Good Practices

  • Use Silk only in development environments
  • Configure alert thresholds
  • Regularly analyze your profiles

Concrete Example of Optimization

# Avant
def lourde_requete(request):
    resultats = VeryComplexModel.objects.filter(
        condition_complexe=True
    ).select_related('relation1').prefetch_related('relation2')

# Après optimisation (guidé par Silk)
def requete_optimisee(request):
    resultats = (
        VeryComplexModel.objects
        .filter(condition_complexe=True)
        .select_related('relation1')
        .prefetch_related('relation2')
        .only('champs_essentiels')  # Projection
    )

When to use it?

  • Development of new features
  • Before a production deployment
  • When adding new complex models

Limitations to be aware of

  • Slight impact on performance
  • For use in development only
  • Disk space consumption

Conclusion

Django-Silk is not just a tool, it is a performance-driven development philosophy. It turns profiling from a chore into a fascinating exploration of your architecture.


Pro Tip?: Integrate Django-Silk into your CI/CD pipeline for systematic performance audits.

The above is the detailed content of Uncovering Django Bottlenecks: An In-Depth Analysis with Django-Silk. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Python Function Arguments and Parameters Python Function Arguments and Parameters Jul 04, 2025 am 03:26 AM

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Explain Python generators and iterators. Explain Python generators and iterators. Jul 05, 2025 am 02:55 AM

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

Python `@classmethod` decorator explained Python `@classmethod` decorator explained Jul 04, 2025 am 03:26 AM

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

What are Python magic methods or dunder methods? What are Python magic methods or dunder methods? Jul 04, 2025 am 03:20 AM

Python's magicmethods (or dunder methods) are special methods used to define the behavior of objects, which start and end with a double underscore. 1. They enable objects to respond to built-in operations, such as addition, comparison, string representation, etc.; 2. Common use cases include object initialization and representation (__init__, __repr__, __str__), arithmetic operations (__add__, __sub__, __mul__) and comparison operations (__eq__, ___lt__); 3. When using it, make sure that their behavior meets expectations. For example, __repr__ should return expressions of refactorable objects, and arithmetic methods should return new instances; 4. Overuse or confusing things should be avoided.

How does Python memory management work? How does Python memory management work? Jul 04, 2025 am 03:26 AM

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

Python `@property` decorator Python `@property` decorator Jul 04, 2025 am 03:28 AM

@property is a decorator in Python used to masquerade methods as properties, allowing logical judgments or dynamic calculation of values ??when accessing properties. 1. It defines the getter method through the @property decorator, so that the outside calls the method like accessing attributes; 2. It can control the assignment behavior with .setter, such as the validity of the check value, if the .setter is not defined, it is read-only attribute; 3. It is suitable for scenes such as property assignment verification, dynamic generation of attribute values, and hiding internal implementation details; 4. When using it, please note that the attribute name is different from the private variable name to avoid dead loops, and is suitable for lightweight operations; 5. In the example, the Circle class restricts radius non-negative, and the Person class dynamically generates full_name attribute

See all articles