


Python Cache: How to Speed Up Your Code with Effective Caching
Dec 16, 2024 am 02:32 AMThis blog was initially posted to Crawlbase Blog
Efficient and fast code is important for creating a great user experience in software applications. Users don’t like waiting for slow responses, whether it’s loading a webpage, training a machine learning model, or running a script. One way to speed up your code is caching.
The purpose of caching is to temporarily cache frequently used data so that your program may access it more rapidly without having to recalculate or retrieve it several times. Caching can speed up response times, reduce load, and improve user experience.
This blog will cover caching principles, its role, use cases, strategies and real world examples of caching in Python. Let’s get started!
Implementing Caching in Python
Caching can be done in Python in multiple ways. Let’s look at two common methods: using a manual decorator for caching and Python’s built-in functools.lru_cache.
1. Manual Decorator for Caching
A decorator is a function that wraps around another function. We can create a caching decorator that stores the result of function calls in memory and returns the cached result if the same input is called again. Here's an example:
import requests # Manual caching decorator def memoize(func): cache = {} def wrapper(*args): if args in cache: return cache[args] result = func(*args) cache[args] = result return result return wrapper # Function to get data from a URL @memoize def get_html(url): response = requests.get(url) return response.text # Example usage print(get_html('https://crawlbase.com'))
In this example, the first time get_html is called, it fetches the data from the URL and caches it. On subsequent calls with the same URL, the cached result is returned.
- Using Python’s functools.lru_cache
Python provides a built-in caching mechanism called lru_cache from the functools module. This decorator caches function calls and removes the least recently used items when the cache is full. Here's how to use it:
from functools import lru_cache @lru_cache(maxsize=128) def expensive_computation(x, y): return x * y # Example usage print(expensive_computation(5, 6))
In this example, lru_cache caches the result of expensive_computation. If the function is called again with the same arguments, it returns the cached result instead of recalculating.
Performance Comparison of Caching Strategies
When choosing a caching strategy, you need to consider how they perform under different conditions. Caching strategies performance depends on the number of cache hits (when data is found in the cache) and the size of the cache.
Here’s a comparison of common caching strategies:
Choosing the right caching strategy depends on your application’s data access patterns and performance needs.
Final Thoughts
Caching can be very useful for your apps. It can reduce data retrieval time and system load. Whether you’re building a web app, a machine learning project or want to speed up your system, smart caching can make your code run faster.
Caching methods such as FIFO, LRU and LFU have different use cases. For example, LRU is good for web apps that need to keep frequently accessed data, whereas LFU is good for programs that need to store data over time.
Implementing caching correctly will let you design faster, more efficient apps and get better performance and user experience.
The above is the detailed content of Python Cache: How to Speed Up Your Code with Effective Caching. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Assert is an assertion tool used in Python for debugging, and throws an AssertionError when the condition is not met. Its syntax is assert condition plus optional error information, which is suitable for internal logic verification such as parameter checking, status confirmation, etc., but cannot be used for security or user input checking, and should be used in conjunction with clear prompt information. It is only available for auxiliary debugging in the development stage rather than substituting exception handling.

TypehintsinPythonsolvetheproblemofambiguityandpotentialbugsindynamicallytypedcodebyallowingdeveloperstospecifyexpectedtypes.Theyenhancereadability,enableearlybugdetection,andimprovetoolingsupport.Typehintsareaddedusingacolon(:)forvariablesandparamete

A common method to traverse two lists simultaneously in Python is to use the zip() function, which will pair multiple lists in order and be the shortest; if the list length is inconsistent, you can use itertools.zip_longest() to be the longest and fill in the missing values; combined with enumerate(), you can get the index at the same time. 1.zip() is concise and practical, suitable for paired data iteration; 2.zip_longest() can fill in the default value when dealing with inconsistent lengths; 3.enumerate(zip()) can obtain indexes during traversal, meeting the needs of a variety of complex scenarios.

InPython,iteratorsareobjectsthatallowloopingthroughcollectionsbyimplementing__iter__()and__next__().1)Iteratorsworkviatheiteratorprotocol,using__iter__()toreturntheiteratorand__next__()toretrievethenextitemuntilStopIterationisraised.2)Aniterable(like

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.
