


Feature Selection with the IAMB Algorithm: A Casual Dive into Machine Learning
Nov 16, 2024 pm 02:24 PMSo, here’s the story—I recently worked on a school assignment by Professor Zhuang involving a pretty cool algorithm called the Incremental Association Markov Blanket (IAMB). Now, I do not have a background in data science or statistics, so this is new territory for me, but I love to learn something new. The goal? Use IAMB to select features in a dataset and see how it impacts the performance of a machine-learning model.
We’ll go over the basics of the IAMB algorithm and apply it to the Pima Indians Diabetes Dataset from Jason Brownlee's datasets. This dataset tracks health data on women and includes whether they have diabetes or not. We’ll use IAMB to figure out which features (like BMI or glucose levels) matter most for predicting diabetes.
What’s the IAMB Algorithm, and Why Use It?
The IAMB algorithm is like a friend who helps you clean up a list of suspects in a mystery—it’s a feature selection method designed to pick out only the variables that truly matter for predicting your target. In this case, the target is whether someone has diabetes.
- Forward Phase: Add variables that are strongly related to the target.
- Backward Phase: Trim out the variables that don’t really help, ensuring only the most crucial ones are left.
In simpler terms, IAMB helps us avoid clutter in our dataset by selecting only the most relevant features. This is especially handy when you want to keep things simple boost model performance and speed up the training time.
Source: Algorithms for Large-Scale Markov Blanket Discovery
What’s This Alpha Thing, and Why Does it Matter?
Here’s where alpha comes in. In statistics, alpha (α) is the threshold we set to decide what counts as "statistically significant." As part of the instructions given by the professor, I used an alpha of 0.05, meaning I only want to keep features that have less than a 5% chance of being randomly associated with the target variable. So, if a feature’s p-value is less than 0.05, it means there’s a strong, statistically significant association with our target.
By using this alpha threshold, we’re focusing only on the most meaningful variables, ignoring any that don’t pass our “significance” test. It’s like a filter that keeps the most relevant features and tosses out the noise.
Getting Hands-On: Using IAMB on the Pima Indians Diabetes Dataset
Here's the setup: the Pima Indians Diabetes Dataset has health features (blood pressure, age, insulin levels, etc.) and our target, Outcome (whether someone has diabetes).
First, we load the data and check it out:
import pandas as pd # Load and preview the dataset url = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv' column_names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'] data = pd.read_csv(url, names=column_names) print(data.head())
Implementing IAMB with Alpha = 0.05
Here’s our updated version of the IAMB algorithm. We’re using p-values to decide which features to keep, so only those with p-values less than our alpha (0.05) are selected.
import pingouin as pg def iamb(target, data, alpha=0.05): markov_blanket = set() # Forward Phase: Add features with a p-value < alpha for feature in data.columns: if feature != target: result = pg.partial_corr(data=data, x=feature, y=target, covar=markov_blanket) p_value = result.at[0, 'p-val'] if p_value < alpha: markov_blanket.add(feature) # Backward Phase: Remove features with p-value > alpha for feature in list(markov_blanket): reduced_mb = markov_blanket - {feature} result = pg.partial_corr(data=data, x=feature, y=target, covar=reduced_mb) p_value = result.at[0, 'p-val'] if p_value > alpha: markov_blanket.remove(feature) return list(markov_blanket) # Apply the updated IAMB function on the Pima dataset selected_features = iamb('Outcome', data, alpha=0.05) print("Selected Features:", selected_features)
When I ran this, it gave me a refined list of features that IAMB thought were most closely related to diabetes outcomes. This list helps narrow down the variables we need for building our model.
Selected Features: ['BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'Glucose']
Testing the Impact of IAMB-Selected Features on Model Performance
Once we have our selected features, the real test compares model performance with all features versus IAMB-selected features. For this, I went with a simple Gaussian Naive Bayes model because it’s straightforward and does well with probabilities (which ties in with the whole Bayesian vibe).
Here’s the code to train and test the model:
from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score, f1_score, roc_auc_score # Split data X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Model with All Features model_all = GaussianNB() model_all.fit(X_train, y_train) y_pred_all = model_all.predict(X_test) # Model with IAMB-Selected Features X_train_selected = X_train[selected_features] X_test_selected = X_test[selected_features] model_iamb = GaussianNB() model_iamb.fit(X_train_selected, y_train) y_pred_iamb = model_iamb.predict(X_test_selected) # Evaluate models results = { 'Model': ['All Features', 'IAMB-Selected Features'], 'Accuracy': [accuracy_score(y_test, y_pred_all), accuracy_score(y_test, y_pred_iamb)], 'F1 Score': [f1_score(y_test, y_pred_all, average='weighted'), f1_score(y_test, y_pred_iamb, average='weighted')], 'AUC-ROC': [roc_auc_score(y_test, y_pred_all), roc_auc_score(y_test, y_pred_iamb)] } results_df = pd.DataFrame(results) display(results_df)
Results
Here’s what the comparison looks like:
Using only the IAMB-selected features gave a slight boost in accuracy and other metrics. It’s not a huge jump, but the fact that we’re getting better performance with fewer features is promising. Plus, it means our model isn’t relying on “noise” or irrelevant data.
Key Takeaways
- IAMB is great for feature selection: It helps clean up our dataset by focusing only on what really matters for predicting our target.
- Less is often more: Sometimes, fewer features give us better results, as we saw here with a small boost in model accuracy.
- Learning and experimenting is the fun part: Even without a deep background in data science, diving into projects like this opens up new ways to understand data and machine learning.
I hope this gives a friendly intro to IAMB! If you’re curious, give it a shot—it’s a handy tool in the machine learning toolbox, and you might just see some cool improvements in your own projects.
Source: Algorithms for Large-Scale Markov Blanket Discovery
The above is the detailed content of Feature Selection with the IAMB Algorithm: A Casual Dive into Machine Learning. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Assert is an assertion tool used in Python for debugging, and throws an AssertionError when the condition is not met. Its syntax is assert condition plus optional error information, which is suitable for internal logic verification such as parameter checking, status confirmation, etc., but cannot be used for security or user input checking, and should be used in conjunction with clear prompt information. It is only available for auxiliary debugging in the development stage rather than substituting exception handling.

A common method to traverse two lists simultaneously in Python is to use the zip() function, which will pair multiple lists in order and be the shortest; if the list length is inconsistent, you can use itertools.zip_longest() to be the longest and fill in the missing values; combined with enumerate(), you can get the index at the same time. 1.zip() is concise and practical, suitable for paired data iteration; 2.zip_longest() can fill in the default value when dealing with inconsistent lengths; 3.enumerate(zip()) can obtain indexes during traversal, meeting the needs of a variety of complex scenarios.

InPython,iteratorsareobjectsthatallowloopingthroughcollectionsbyimplementing__iter__()and__next__().1)Iteratorsworkviatheiteratorprotocol,using__iter__()toreturntheiteratorand__next__()toretrievethenextitemuntilStopIterationisraised.2)Aniterable(like

TypehintsinPythonsolvetheproblemofambiguityandpotentialbugsindynamicallytypedcodebyallowingdeveloperstospecifyexpectedtypes.Theyenhancereadability,enableearlybugdetection,andimprovetoolingsupport.Typehintsareaddedusingacolon(:)forvariablesandparamete

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.
