


How can I simulate a realistic atmosphere around a 3D Earth model using Three.js and a custom fragment shader?
Nov 12, 2024 am 11:09 AMThree.js is a popular JavaScript library for creating 3D graphics in the browser. It's often used for creating interactive visualizations and games. One of the challenges with 3D graphics is rendering objects that are not opaque, such as clouds or smoke. These objects allow light to pass through them, which can create a softer, more realistic look.
In this case, the goal is to add an "atmosphere" effect to a representation of the Earth. The atmosphere will be a semi-transparent layer that surrounds the Earth and scatters light, giving it a more realistic appearance.
To achieve this effect, we'll create a fragment shader that will compute the color of each pixel in the atmosphere based on its position in the atmosphere and the direction of the light source. The fragment shader will use a technique called "atmospheric scattering" to simulate the way that light is scattered by particles in the atmosphere.
Here is the fragment shader code:
#ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { // Compute the surface normal at this position vec3 normal = normalize(vNormal); // Compute the direction from this point to the light source vec3 lightDir = normalize(lightDirection); // Compute the amount of light that is scattered in this direction float scattering = dot(normal, lightDir); // Compute the color of the atmosphere at this position vec3 color = texture2D(earthTexture, vUv).rgb * scattering; // Output the color gl_FragColor = vec4(color, 1.0); }
This fragment shader takes several inputs:
- lightDirection: The direction to the light source.
- earthTexture: The texture used to represent the Earth.
- vUv: The texture coordinates for the current pixel.
- vNormal: The normal vector for the current pixel.
The fragment shader first computes the surface normal at the current pixel. It then computes the direction from the current pixel to the light source. These two values are used to compute the amount of light that is scattered in the direction of the pixel.
The fragment shader then computes the color of the atmosphere at the current pixel by multiplying the color of the Earth texture by the amount of scattering. The resulting color is output as the fragment color.
To use this fragment shader, we need to create a material that uses it. Here is an example of a material that uses the atmospheric scattering fragment shader:
const material = new THREE.ShaderMaterial({ fragmentShader: ` #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { vec3 normal = normalize(vNormal); vec3 lightDir = normalize(lightDirection); float scattering = dot(normal, lightDir); vec3 color = texture2D(earthTexture, vUv).rgb * scattering; gl_FragColor = vec4(color, 1.0); } `, uniforms: { lightDirection: { value: new THREE.Vector3(0, 1, 0) }, earthTexture: { value: new THREE.TextureLoader().load('earth.jpg') } } });
This material takes two uniforms:
- lightDirection: The direction to the light source.
- earthTexture: The texture used to represent the Earth.
The material uses the lightDirection uniform to compute the amount of light that is scattered in each direction. It uses the earthTexture uniform to represent the surface of the Earth.
To use this material, we need to create a mesh and assign it to the material. Here is an example of how to create a mesh and assign it to the material:
const geometry = new THREE.SphereGeometry(10, 32, 32); const material = new THREE.ShaderMaterial({ fragmentShader: ` #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { vec3 normal = normalize(vNormal); vec3 lightDir = normalize(lightDirection); float scattering = dot(normal, lightDir); vec3 color = texture2D(earthTexture, vUv).rgb * scattering; gl_FragColor = vec4(color, 1.0); } `, uniforms: { lightDirection: { value: new THREE.Vector3(0, 1, 0) }, earthTexture: { value: new THREE.TextureLoader().load('earth.jpg') } } }); const mesh = new THREE.Mesh(geometry, material);
This code creates a sphere geometry with a radius of 10, 32 segments, and 32 rings. It then creates a material that uses the atmospheric scattering fragment shader. Finally, it creates a mesh and assigns it to the material.
Once the mesh has been created, it can be added to the scene. Here is an example of how to add the mesh to the scene:
#ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { // Compute the surface normal at this position vec3 normal = normalize(vNormal); // Compute the direction from this point to the light source vec3 lightDir = normalize(lightDirection); // Compute the amount of light that is scattered in this direction float scattering = dot(normal, lightDir); // Compute the color of the atmosphere at this position vec3 color = texture2D(earthTexture, vUv).rgb * scattering; // Output the color gl_FragColor = vec4(color, 1.0); }
This code adds the mesh to the scene. The mesh will now be rendered using the atmospheric scattering fragment shader. The result will be a semi-transparent atmosphere that surrounds the Earth.
The above is the detailed content of How can I simulate a realistic atmosphere around a 3D Earth model using Three.js and a custom fragment shader?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

Which JavaScript framework is the best choice? The answer is to choose the most suitable one according to your needs. 1.React is flexible and free, suitable for medium and large projects that require high customization and team architecture capabilities; 2. Angular provides complete solutions, suitable for enterprise-level applications and long-term maintenance; 3. Vue is easy to use, suitable for small and medium-sized projects or rapid development. In addition, whether there is an existing technology stack, team size, project life cycle and whether SSR is needed are also important factors in choosing a framework. In short, there is no absolutely the best framework, the best choice is the one that suits your needs.

Hello, JavaScript developers! Welcome to this week's JavaScript news! This week we will focus on: Oracle's trademark dispute with Deno, new JavaScript time objects are supported by browsers, Google Chrome updates, and some powerful developer tools. Let's get started! Oracle's trademark dispute with Deno Oracle's attempt to register a "JavaScript" trademark has caused controversy. Ryan Dahl, the creator of Node.js and Deno, has filed a petition to cancel the trademark, and he believes that JavaScript is an open standard and should not be used by Oracle

CacheAPI is a tool provided by the browser to cache network requests, which is often used in conjunction with ServiceWorker to improve website performance and offline experience. 1. It allows developers to manually store resources such as scripts, style sheets, pictures, etc.; 2. It can match cache responses according to requests; 3. It supports deleting specific caches or clearing the entire cache; 4. It can implement cache priority or network priority strategies through ServiceWorker listening to fetch events; 5. It is often used for offline support, speed up repeated access speed, preloading key resources and background update content; 6. When using it, you need to pay attention to cache version control, storage restrictions and the difference from HTTP caching mechanism.

Promise is the core mechanism for handling asynchronous operations in JavaScript. Understanding chain calls, error handling and combiners is the key to mastering their applications. 1. The chain call returns a new Promise through .then() to realize asynchronous process concatenation. Each .then() receives the previous result and can return a value or a Promise; 2. Error handling should use .catch() to catch exceptions to avoid silent failures, and can return the default value in catch to continue the process; 3. Combinators such as Promise.all() (successfully successful only after all success), Promise.race() (the first completion is returned) and Promise.allSettled() (waiting for all completions)

JavaScript array built-in methods such as .map(), .filter() and .reduce() can simplify data processing; 1) .map() is used to convert elements one to one to generate new arrays; 2) .filter() is used to filter elements by condition; 3) .reduce() is used to aggregate data as a single value; misuse should be avoided when used, resulting in side effects or performance problems.

JavaScript's event loop manages asynchronous operations by coordinating call stacks, WebAPIs, and task queues. 1. The call stack executes synchronous code, and when encountering asynchronous tasks, it is handed over to WebAPI for processing; 2. After the WebAPI completes the task in the background, it puts the callback into the corresponding queue (macro task or micro task); 3. The event loop checks whether the call stack is empty. If it is empty, the callback is taken out from the queue and pushed into the call stack for execution; 4. Micro tasks (such as Promise.then) take precedence over macro tasks (such as setTimeout); 5. Understanding the event loop helps to avoid blocking the main thread and optimize the code execution order.
