


How to efficiently convert 32-bit floating point numbers to 16-bit for data transmission?
Nov 05, 2024 pm 07:07 PM32-bit to 16-bit Floating Point Conversion
In many scenarios, reducing the size of 32-bit floating point numbers to 16-bit is valuable for tasks like transmitting data across networks, as mentioned by the user. To address this need, numerous libraries and algorithms are available to perform this conversion in a cross-platform manner.
Conversion Algorithms
For efficient conversion, consider the IEEE 16-bit floating point format. This format uses 10 bits for the significand (mantissa), 5 bits for the exponent, and 1 bit for the sign. Several algorithms handle the intricacies of converting between this format and 32-bit floating point numbers.
Raw Binary Encoding
One method is to directly convert the raw binary representations of the numbers. This involves extracting the significand, exponent, and sign from the 32-bit float. Then, these values are scaled and shifted to fit within the 16-bit format. While straightforward, this approach can introduce precision loss due to rounding.
IEEE 16-bit Encoder
A more sophisticated approach is to use an IEEE 16-bit encoder. This encoder follows the IEEE 754-2008 standard and considers edge cases such as infinity, NaN (not a number), and subnormal numbers. It employs careful rounding techniques to preserve accuracy as much as possible during the conversion.
Fixed Point Linearization
If high precision near zero is not required, an alternative is to use fixed point linearization. This technique involves scaling the 32-bit float to an integer representation, effectively removing the floating point exponent. This method is faster than floating point conversion but results in less accurate values in the vicinity of zero.
Libraries and Implementations
Various libraries and code snippets are available that offer functions for converting between 32-bit and 16-bit floating point numbers. Here are a few popular options:
- glm: Includes functions for converting between different floating point formats, including float16 (16-bit half precision).
- Eigen: Provides a half data type and methods for converting from and to 32-bit floats.
- SSE math library: Offers intrinsics for efficient 16-bit (float16) arithmetic and conversion.
- Custom implementations: Many developers create their own conversion routines tailored to specific requirements and performance considerations.
Conclusion
Converting between 32-bit and 16-bit floating point numbers involves various techniques and considerations. By selecting the appropriate approach and tool, you can effectively reduce the size of your floating point data while maintaining an acceptable level of precision for your application.
The above is the detailed content of How to efficiently convert 32-bit floating point numbers to 16-bit for data transmission?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

std::chrono is used in C to process time, including obtaining the current time, measuring execution time, operation time point and duration, and formatting analysis time. 1. Use std::chrono::system_clock::now() to obtain the current time, which can be converted into a readable string, but the system clock may not be monotonous; 2. Use std::chrono::steady_clock to measure the execution time to ensure monotony, and convert it into milliseconds, seconds and other units through duration_cast; 3. Time point (time_point) and duration (duration) can be interoperable, but attention should be paid to unit compatibility and clock epoch (epoch)

There are mainly the following methods to obtain stack traces in C: 1. Use backtrace and backtrace_symbols functions on Linux platform. By including obtaining the call stack and printing symbol information, the -rdynamic parameter needs to be added when compiling; 2. Use CaptureStackBackTrace function on Windows platform, and you need to link DbgHelp.lib and rely on PDB file to parse the function name; 3. Use third-party libraries such as GoogleBreakpad or Boost.Stacktrace to cross-platform and simplify stack capture operations; 4. In exception handling, combine the above methods to automatically output stack information in catch blocks

In C, the POD (PlainOldData) type refers to a type with a simple structure and compatible with C language data processing. It needs to meet two conditions: it has ordinary copy semantics, which can be copied by memcpy; it has a standard layout and the memory structure is predictable. Specific requirements include: all non-static members are public, no user-defined constructors or destructors, no virtual functions or base classes, and all non-static members themselves are PODs. For example structPoint{intx;inty;} is POD. Its uses include binary I/O, C interoperability, performance optimization, etc. You can check whether the type is POD through std::is_pod, but it is recommended to use std::is_trivia after C 11.

To call Python code in C, you must first initialize the interpreter, and then you can achieve interaction by executing strings, files, or calling specific functions. 1. Initialize the interpreter with Py_Initialize() and close it with Py_Finalize(); 2. Execute string code or PyRun_SimpleFile with PyRun_SimpleFile; 3. Import modules through PyImport_ImportModule, get the function through PyObject_GetAttrString, construct parameters of Py_BuildValue, call the function and process return

FunctionhidinginC occurswhenaderivedclassdefinesafunctionwiththesamenameasabaseclassfunction,makingthebaseversioninaccessiblethroughthederivedclass.Thishappenswhenthebasefunctionisn’tvirtualorsignaturesdon’tmatchforoverriding,andnousingdeclarationis

In C, there are three main ways to pass functions as parameters: using function pointers, std::function and Lambda expressions, and template generics. 1. Function pointers are the most basic method, suitable for simple scenarios or C interface compatible, but poor readability; 2. Std::function combined with Lambda expressions is a recommended method in modern C, supporting a variety of callable objects and being type-safe; 3. Template generic methods are the most flexible, suitable for library code or general logic, but may increase the compilation time and code volume. Lambdas that capture the context must be passed through std::function or template and cannot be converted directly into function pointers.

AnullpointerinC isaspecialvalueindicatingthatapointerdoesnotpointtoanyvalidmemorylocation,anditisusedtosafelymanageandcheckpointersbeforedereferencing.1.BeforeC 11,0orNULLwasused,butnownullptrispreferredforclarityandtypesafety.2.Usingnullpointershe

std::move does not actually move anything, it just converts the object to an rvalue reference, telling the compiler that the object can be used for a move operation. For example, when string assignment, if the class supports moving semantics, the target object can take over the source object resource without copying. Should be used in scenarios where resources need to be transferred and performance-sensitive, such as returning local objects, inserting containers, or exchanging ownership. However, it should not be abused, because it will degenerate into a copy without a moving structure, and the original object status is not specified after the movement. Appropriate use when passing or returning an object can avoid unnecessary copies, but if the function returns a local variable, RVO optimization may already occur, adding std::move may affect the optimization. Prone to errors include misuse on objects that still need to be used, unnecessary movements, and non-movable types
