Introduction to Utility Types
Utility types in TypeScript allow you to transform existing types into new ones by including, excluding, or modifying properties. This can be incredibly useful when you need to create type definitions that are tailored to specific use cases without duplicating code.
Using?ReturnType?and?Awaited?in TypeScript
When working with TypeScript, you might often need to determine the return type of a function. TypeScript provides a handy utility type called?ReturnType?for this purpose. Let’s walk through how to use it, including handling asynchronous functions.
1.?Getting the Return Type of a Function
To get the return type of a function, you can use the?ReturnType?utility type. Here’s an example:
function foo() { const something:string = "" return something; } function async fooWithAsync() { const something:string = "" return something; }
// will return Promise>
In this example:
The?foo?function returns a string.
ReturnType?extracts the return type of?foo, which is?string.
2.?Handling Asynchronous Functions
When dealing with asynchronous functions, the return type is a?Promise. Here’s an example:
type MyReturnType = ReturnType
In this example:
The?fooWithAsync?function returns a?Promise?that resolves to a string.
ReturnType?extracts the return type, which is?Promise.
3.?Using?Awaited?for Asynchronous Functions
If you want to get the resolved type of the?Promise?returned by an asynchronous function, you can use the?Awaited?utility type. Here’s how:
type MyAsyncReturnType = Awaited<ReturnType<typeof foo>>
In this example:
ReturnType?gives?Promise.
Awaited>?resolves the?Promise?to its underlying type, which is?string.
Summary:
ReturnType: Extracts the return type of a function.
Awaited: Resolves the type of a?Promise.
export const getEvents = async (user: User): Promise<ApiResponse> => { const eventsApiUrl: string = `${PROMOS_END_POINTS.EVENTS}`; const apiInstance: AxiosInstance = getAxiosInstance(user, API_SERVICES.PROMOTIONS); const response: AxiosResponse = await apiInstance.get(eventsApiUrl); return response.data; }; type OfferEvent = Awaited<ReturnType<typeof getEvents>>; const initEvent:OfferEvent = {event:[]}
By combining these utility types, you can effectively determine the return types of both synchronous and asynchronous functions in TypeScript.
*Extracting Return Types with Conditional Types in TypeScript
*
In TypeScript, you can use conditional types and type inference to dynamically extract the return type from a function type. This is particularly useful for creating flexible and reusable type utilities. Let’s explore how this works with the?MyReturnTypeWithCondition?type alias.
type MyReturnTypeWithCondition<T> = T extends (...args: any[]) => infer R ? R : never;
Breaking It Down
Conditional Check:?T extends (...args: any[]) => infer R
This part checks if?T?is a function type.
The?...args: any[]?syntax matches any function signature.
The?infer R?keyword captures the return type of the function into a type variable?R.
Result:?? R : never
If?T?is a function type, the type alias resolves to?R, the return type of the function.
If?T?is not a function type, it resolves to?never.
Practical Example
Consider the following example to see this in action:
function foo() { const something:string = "" return something; } function async fooWithAsync() { const something:string = "" return something; }
In above example, ReturnType will be boolean because
Example Function is a function type that returns a boolean. If you use a non-function type, ReturnType will be never.
This approach allows you to create highly adaptable type utilities that can infer and manipulate types based on their structure. It’s a powerful feature of TypeScript that enhances type safety and code maintainability.
Combining and Prettifying Types in TypeScript
When working with TypeScript, you often need to combine multiple types or interfaces to create more complex structures. This can sometimes result in types that are difficult to read and manage. This document will explore how to combine two types, make nested types prettier, and check if merged types are equal.
1.?Combining Two Types
Combining two types in TypeScript is a common task. You can achieve this using intersection types (&). Let’s say you have two interfaces,?OfferSummaryWithoutConfig?and?OfferTypeConfiguration, and you want to combine them.
type MyAsyncReturnType = Awaited<ReturnType<typeof foo>>
You can combine these two interfaces using the intersection type (&):
export const getEvents = async (user: User): Promise<ApiResponse> => { const eventsApiUrl: string = `${PROMOS_END_POINTS.EVENTS}`; const apiInstance: AxiosInstance = getAxiosInstance(user, API_SERVICES.PROMOTIONS); const response: AxiosResponse = await apiInstance.get(eventsApiUrl); return response.data; }; type OfferEvent = Awaited<ReturnType<typeof getEvents>>; const initEvent:OfferEvent = {event:[]}
This creates a new type that includes all the properties from both?OfferSummaryWithoutConfig?and?OfferTypeConfiguration.
2.?Prettifying Nested Types
When you merge types, the resulting type can sometimes look messy and hard to read. To make these types more readable, you can use a utility type called?Prettify.
type MyReturnTypeWithCondition<T> = T extends (...args: any[]) => infer R ? R : never;
This utility type iterates over the keys of the type?T?and reconstructs it, making the type definition cleaner and easier to read.
After combining the types, you can use the?Prettify?utility type to clean up the resulting type
Conditional Check:?T extends (...args: any[]) => infer R
3.?Checking if Merged Types are Equal
To ensure that the merged type is exactly what you expect, you can use utility types to check if two types are identical, exact, or equal.
IsExact: Checks if two types are exactly the same.
type ExampleFunction = (x: number, y: string) => boolean; type ReturnType = MyReturnTypeWithCondition<ExampleFunction>; // ReturnType will be boolean
IsIdentical: Uses conditional types to compare two types.
type IsIdentical
IsEqual: Ensures that both types have the same keys.
export interface OfferSummaryWithoutConfig { id: string; auditInfo: AuditInfo; offerBasicInfo: OfferBasicInfo; metaData: MetaData; conditionGroupsSummary: ConditionGroupsSummary[]; rewardGroupsSummary: RewardGroupsSummary[]; userOperations: ActionPermission; } export interface OfferTypeConfiguration { id: number; name: string; description: string; configuration: Configuration; }
You can use these utility types to check if?CombinedType?is identical, exact, or equal to another type?OfferSummary.
type CombinedType = OfferSummaryWithoutConfig & { offerTypeConfiguration: OfferTypeConfiguration; };
Practical Example
Let’s put it all together with a practical example:
type Prettify<T> = { };
The above is the detailed content of TypeScript : Utility Utility Types. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

JavaScript's garbage collection mechanism automatically manages memory through a tag-clearing algorithm to reduce the risk of memory leakage. The engine traverses and marks the active object from the root object, and unmarked is treated as garbage and cleared. For example, when the object is no longer referenced (such as setting the variable to null), it will be released in the next round of recycling. Common causes of memory leaks include: ① Uncleared timers or event listeners; ② References to external variables in closures; ③ Global variables continue to hold a large amount of data. The V8 engine optimizes recycling efficiency through strategies such as generational recycling, incremental marking, parallel/concurrent recycling, and reduces the main thread blocking time. During development, unnecessary global references should be avoided and object associations should be promptly decorated to improve performance and stability.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

Which JavaScript framework is the best choice? The answer is to choose the most suitable one according to your needs. 1.React is flexible and free, suitable for medium and large projects that require high customization and team architecture capabilities; 2. Angular provides complete solutions, suitable for enterprise-level applications and long-term maintenance; 3. Vue is easy to use, suitable for small and medium-sized projects or rapid development. In addition, whether there is an existing technology stack, team size, project life cycle and whether SSR is needed are also important factors in choosing a framework. In short, there is no absolutely the best framework, the best choice is the one that suits your needs.

Hello, JavaScript developers! Welcome to this week's JavaScript news! This week we will focus on: Oracle's trademark dispute with Deno, new JavaScript time objects are supported by browsers, Google Chrome updates, and some powerful developer tools. Let's get started! Oracle's trademark dispute with Deno Oracle's attempt to register a "JavaScript" trademark has caused controversy. Ryan Dahl, the creator of Node.js and Deno, has filed a petition to cancel the trademark, and he believes that JavaScript is an open standard and should not be used by Oracle

IIFE (ImmediatelyInvokedFunctionExpression) is a function expression executed immediately after definition, used to isolate variables and avoid contaminating global scope. It is called by wrapping the function in parentheses to make it an expression and a pair of brackets immediately followed by it, such as (function(){/code/})();. Its core uses include: 1. Avoid variable conflicts and prevent duplication of naming between multiple scripts; 2. Create a private scope to make the internal variables invisible; 3. Modular code to facilitate initialization without exposing too many variables. Common writing methods include versions passed with parameters and versions of ES6 arrow function, but note that expressions and ties must be used.

Promise is the core mechanism for handling asynchronous operations in JavaScript. Understanding chain calls, error handling and combiners is the key to mastering their applications. 1. The chain call returns a new Promise through .then() to realize asynchronous process concatenation. Each .then() receives the previous result and can return a value or a Promise; 2. Error handling should use .catch() to catch exceptions to avoid silent failures, and can return the default value in catch to continue the process; 3. Combinators such as Promise.all() (successfully successful only after all success), Promise.race() (the first completion is returned) and Promise.allSettled() (waiting for all completions)

CacheAPI is a tool provided by the browser to cache network requests, which is often used in conjunction with ServiceWorker to improve website performance and offline experience. 1. It allows developers to manually store resources such as scripts, style sheets, pictures, etc.; 2. It can match cache responses according to requests; 3. It supports deleting specific caches or clearing the entire cache; 4. It can implement cache priority or network priority strategies through ServiceWorker listening to fetch events; 5. It is often used for offline support, speed up repeated access speed, preloading key resources and background update content; 6. When using it, you need to pay attention to cache version control, storage restrictions and the difference from HTTP caching mechanism.
