In this post, we explore Abstract Classes, an essential part of abstraction in Java. We'll build on concepts discussed earlier and examine how abstraction simplifies complex systems. Abstract classes serve as a blueprint for other classes, allowing us to focus only on relevant details while hiding unnecessary complexity.
Let’s dive deeper into what abstract classes are, why they exist, and how they are used.
What is an Abstract Class?
An abstract class is a class that cannot be instantiated on its own. It’s designed to be extended by subclasses that provide concrete implementations for its abstract methods. In other words, an abstract class lays out the foundation for its subclasses, enabling code reuse and enforcing structure.
Key Features of Abstract Classes:
Defined using the abstract keyword.
Can contain abstract methods (methods without a body) that must be implemented by subclasses.
Can also have concrete methods with full implementations.
Can declare constructors, fields, and non-abstract methods.
Cannot be instantiated directly.
Why Abstract Classes?
Abstract classes allow developers to hide unnecessary implementation details from the user while ensuring that certain methods are implemented by all subclasses. They act as half-defined templates and encourage code reuse by providing shared functionality in the base class.
Example: Employee and Manager
To demonstrate how abstract classes work, let’s look at the following example involving an abstract EmployeeParent class and its ManagerChild subclass. The parent class holds shared functionality, while the child class completes the implementation with specific details like performance bonuses.
EmployeeParent.java
package oops.abstract_class; public abstract class EmployeeParent { private int id, depId; private String name; private double basicSal; public EmployeeParent(int id, String name, int deptId, double basicSal) { this.id = id; this.depId = deptId; this.name = name; this.basicSal = basicSal; } // Abstract method to be implemented by subclasses. protected abstract double computeNetSalary(); protected double getBasicSal() { return basicSal; } @Override public String toString() { return "EmployeeParent [id=" + id + ", depId=" + depId + ", name=" + name + ", basicSal=" + basicSal + "]"; } }
ManagerChild.java
package oops.abstract_class; public class ManagerChild extends EmployeeParent { private double perfBonus; public ManagerChild(int id, String name, int deptId, double basicSal, double perfBonus) { // Calling the constructor of the abstract class. super(id, name, deptId, basicSal); this.perfBonus = perfBonus; } // Implementing the abstract method from EmployeeParent. @Override public double computeNetSalary() { return getBasicSal() + perfBonus; } @Override public String toString() { return "ManagerChild [perfBonus=" + perfBonus + "\n" + super.toString() + "]"; } public static void main(String[] args) { ManagerChild manager = new ManagerChild(1, "Arshi", 2, 10000, 1890); System.out.println(manager); System.out.println("Net Salary: " + manager.computeNetSalary()); // Abstract class cannot be instantiated EmployeeParent employee = new EmployeeParent(); // Compile Error } }
Breaking Down the Example
In the above code:
EmployeeParent is the abstract class that defines the structure for its subclasses.
It contains both concrete methods (like toString and getBasicSal) and an abstract method (computeNetSalary), which must be implemented by any subclass.
ManagerChild extends EmployeeParent and provides the specific logic for computing the net salary, including the performance bonus.
The abstract class constructor is invoked via the super() call in the child class constructor, as the abstract class cannot be instantiated directly.
When Should You Use Abstract Classes?
Code Reusability: When multiple classes share common fields and behavior.
Enforce Structure: When you want to mandate the implementation of certain methods in subclasses.
Partial Implementation: When some logic can be shared among classes, while specific logic varies.
Use Case Example: You could have an abstract Shape class with common properties (like color) and abstract methods (like getArea), which different shapes (Circle, Rectangle) would implement differently.
Conclusion
Abstract classes play a crucial role in Java by providing a balance between full abstraction and concrete implementation. They allow developers to focus on what’s necessary while hiding intricate details from the user. Understanding and effectively using abstract classes is an important step toward mastering object-oriented programming.
Stay tuned for the next post in the series, where we explore interfaces and how they differ from abstract classes!
Related Posts
Java Fundamentals
Array Interview Essentials
Java Memory Essentials
Java Keywords Essentials
Collections Framework Essentials
Happy Coding!
The above is the detailed content of Abstraction: Decoding Abstract Classes in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

There are three main differences between Callable and Runnable in Java. First, the callable method can return the result, suitable for tasks that need to return values, such as Callable; while the run() method of Runnable has no return value, suitable for tasks that do not need to return, such as logging. Second, Callable allows to throw checked exceptions to facilitate error transmission; while Runnable must handle exceptions internally. Third, Runnable can be directly passed to Thread or ExecutorService, while Callable can only be submitted to ExecutorService and returns the Future object to

Java supports asynchronous programming including the use of CompletableFuture, responsive streams (such as ProjectReactor), and virtual threads in Java19. 1.CompletableFuture improves code readability and maintenance through chain calls, and supports task orchestration and exception handling; 2. ProjectReactor provides Mono and Flux types to implement responsive programming, with backpressure mechanism and rich operators; 3. Virtual threads reduce concurrency costs, are suitable for I/O-intensive tasks, and are lighter and easier to expand than traditional platform threads. Each method has applicable scenarios, and appropriate tools should be selected according to your needs and mixed models should be avoided to maintain simplicity

JavaNIO is a new IOAPI introduced by Java 1.4. 1) is aimed at buffers and channels, 2) contains Buffer, Channel and Selector core components, 3) supports non-blocking mode, and 4) handles concurrent connections more efficiently than traditional IO. Its advantages are reflected in: 1) Non-blocking IO reduces thread overhead, 2) Buffer improves data transmission efficiency, 3) Selector realizes multiplexing, and 4) Memory mapping speeds up file reading and writing. Note when using: 1) The flip/clear operation of the Buffer is easy to be confused, 2) Incomplete data needs to be processed manually without blocking, 3) Selector registration must be canceled in time, 4) NIO is not suitable for all scenarios.

In Java, enums are suitable for representing fixed constant sets. Best practices include: 1. Use enum to represent fixed state or options to improve type safety and readability; 2. Add properties and methods to enums to enhance flexibility, such as defining fields, constructors, helper methods, etc.; 3. Use EnumMap and EnumSet to improve performance and type safety because they are more efficient based on arrays; 4. Avoid abuse of enums, such as dynamic values, frequent changes or complex logic scenarios, which should be replaced by other methods. Correct use of enum can improve code quality and reduce errors, but you need to pay attention to its applicable boundaries.

Java's class loading mechanism is implemented through ClassLoader, and its core workflow is divided into three stages: loading, linking and initialization. During the loading phase, ClassLoader dynamically reads the bytecode of the class and creates Class objects; links include verifying the correctness of the class, allocating memory to static variables, and parsing symbol references; initialization performs static code blocks and static variable assignments. Class loading adopts the parent delegation model, and prioritizes the parent class loader to find classes, and try Bootstrap, Extension, and ApplicationClassLoader in turn to ensure that the core class library is safe and avoids duplicate loading. Developers can customize ClassLoader, such as URLClassL

Javaprovidesmultiplesynchronizationtoolsforthreadsafety.1.synchronizedblocksensuremutualexclusionbylockingmethodsorspecificcodesections.2.ReentrantLockoffersadvancedcontrol,includingtryLockandfairnesspolicies.3.Conditionvariablesallowthreadstowaitfor

The key to Java exception handling is to distinguish between checked and unchecked exceptions and use try-catch, finally and logging reasonably. 1. Checked exceptions such as IOException need to be forced to handle, which is suitable for expected external problems; 2. Unchecked exceptions such as NullPointerException are usually caused by program logic errors and are runtime errors; 3. When catching exceptions, they should be specific and clear to avoid general capture of Exception; 4. It is recommended to use try-with-resources to automatically close resources to reduce manual cleaning of code; 5. In exception handling, detailed information should be recorded in combination with log frameworks to facilitate later

HashMap implements key-value pair storage through hash tables in Java, and its core lies in quickly positioning data locations. 1. First use the hashCode() method of the key to generate a hash value and convert it into an array index through bit operations; 2. Different objects may generate the same hash value, resulting in conflicts. At this time, the node is mounted in the form of a linked list. After JDK8, the linked list is too long (default length 8) and it will be converted to a red and black tree to improve efficiency; 3. When using a custom class as a key, the equals() and hashCode() methods must be rewritten; 4. HashMap dynamically expands capacity. When the number of elements exceeds the capacity and multiplies by the load factor (default 0.75), expand and rehash; 5. HashMap is not thread-safe, and Concu should be used in multithreaded
