亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Home Web Front-end JS Tutorial JavaScript OOP Concepts: Class-Based vs. Prototype-Based

JavaScript OOP Concepts: Class-Based vs. Prototype-Based

Oct 20, 2024 pm 02:34 PM

JavaScript OOP Concepts: Class-Based vs. Prototype-BasedTo write a detailed blog on JavaScript's Object-Oriented Programming (OOP) concepts and prototypes, we'll go through first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction, explaining both class-based and prototype-based approaches.


JavaScript is unique in that it can support both class-based OOP (introduced in ES6) and prototype-based OOP (the original way JavaScript handled OOP). This blog will dive into key OOP concepts like first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction using both approaches.

1. First-Class Functions

In JavaScript, functions are first-class citizens. This means that functions can be:

  • Assigned to variables
  • Passed as arguments
  • Returned from other functions

Absolutely! Let's break down the blog post to cover both first-class functions and first-class instances using both functional and class-based approaches in JavaScript. This will provide a clear understanding of these concepts in the context of Object-Oriented Programming (OOP).

Functional Approach

Example: First-Class Functions

// Assigning a function to a variable
const greet = function(name) {
  return `Hello, ${name}!`;
};

// Passing a function as an argument
function logGreeting(fn, name) {
  console.log(fn(name));
}

// Returning a function
function createMultiplier(multiplier) {
  return function(number) {
    return number * multiplier;
  };
}

logGreeting(greet, "John");  // Output: Hello, John!

const double = createMultiplier(2);
console.log(double(5));  // Output: 10

Explanation:

  • Functions can be stored, passed, and returned like any other value, showcasing first-class functions.

Class-Based Approach

Although functions are first-class citizens, we can also create classes that mimic similar behavior.

Example: First-Class Functions in a Class Context

class Greeter {
  constructor(name) {
    this.name = name;
  }

  greet() {
    return `Hello, ${this.name}!`;
  }
}

// Logging greeting
class Logger {
  static logGreeting(greeter) {
    console.log(greeter.greet());
  }
}

// Using classes to demonstrate first-class functions
const greeter = new Greeter("John");
Logger.logGreeting(greeter); // Output: Hello, John!

Explanation:

  • The Greeter class demonstrates a first-class function-like behavior by encapsulating the greet method, which can be passed to other functions (like logGreeting).

2. First-Class Instances

Instances of objects or classes can also be treated as first-class citizens. They can be assigned to variables, passed as arguments, and stored in collections.

Like functions, instances of objects or classes can also be treated as first-class citizens. They can be:

  • Assigned to variables
  • Passed as arguments
  • Returned from functions
  • Stored in collections like arrays

Functional Approach

Example: First-Class Instances

// Assigning a function to a variable
const greet = function(name) {
  return `Hello, ${name}!`;
};

// Passing a function as an argument
function logGreeting(fn, name) {
  console.log(fn(name));
}

// Returning a function
function createMultiplier(multiplier) {
  return function(number) {
    return number * multiplier;
  };
}

logGreeting(greet, "John");  // Output: Hello, John!

const double = createMultiplier(2);
console.log(double(5));  // Output: 10

Explanation:

  • Here, myCar and yourCar are instances of the Car function constructor. They can be passed to functions and stored in variables.

Class-Based Approach

Example: First-Class Instances in Class Context

class Greeter {
  constructor(name) {
    this.name = name;
  }

  greet() {
    return `Hello, ${this.name}!`;
  }
}

// Logging greeting
class Logger {
  static logGreeting(greeter) {
    console.log(greeter.greet());
  }
}

// Using classes to demonstrate first-class functions
const greeter = new Greeter("John");
Logger.logGreeting(greeter); // Output: Hello, John!

Explanation:

  • In this example, myCar and yourCar are instances of the Car class, and just like the functional approach, they can be passed to functions and manipulated.

3. Inheritance

Class-Based Inheritance allows you to create a new class that inherits properties and methods from an existing class using the extends keyword.

Class-Based Example:

function Car(make, model) {
  this.make = make;
  this.model = model;

  this.startEngine = function() {
    console.log(`${this.make} ${this.model} engine started.`);
  };
}

const myCar = new Car("Toyota", "Corolla");
const yourCar = new Car("Tesla", "Model 3");

// Passing instance as an argument
function showCarDetails(car) {
  console.log(`Car: ${car.make} ${car.model}`);
}

showCarDetails(myCar);  // Output: Car: Toyota Corolla

Prototype-Based Example:

class Car {
  constructor(make, model) {
    this.make = make;
    this.model = model;
  }

  startEngine() {
    console.log(`${this.make} ${this.model} engine started.`);
  }
}

const myCar = new Car("Toyota", "Corolla");
const yourCar = new Car("Tesla", "Model 3");

// Passing instance as an argument
function showCarDetails(car) {
  console.log(`Car: ${car.make} ${car.model}`);
}

showCarDetails(myCar);  // Output: Car: Toyota Corolla

Explanation:

  • Class-based inheritance uses extends to inherit from a parent class, while prototype-based inheritance uses Object.create to link objects.

4. Polymorphism

Polymorphism allows different objects to define their own versions of the same method, which can be called on objects of a parent type.

Class-Based Example:

class Animal {
  constructor(name) {
    this.name = name;
  }

  speak() {
    console.log(`${this.name} makes a sound.`);
  }
}

class Dog extends Animal {
  speak() {
    console.log(`${this.name} barks.`);
  }
}

const myDog = new Dog("Buddy");
myDog.speak();  // Output: Buddy barks.

Prototype-Based Example:

function Animal(name) {
  this.name = name;
}

Animal.prototype.speak = function() {
  console.log(`${this.name} makes a sound.`);
};

function Dog(name) {
  Animal.call(this, name);  // Inherit properties
}

Dog.prototype = Object.create(Animal.prototype);  // Inherit methods
Dog.prototype.constructor = Dog;

Dog.prototype.speak = function() {
  console.log(`${this.name} barks.`);
};

const myDog = new Dog("Buddy");
myDog.speak();  // Output: Buddy barks.

Explanation:

  • Polymorphism allows both class-based and prototype-based objects to define their own version of the speak method while still inheriting from a parent type.

5. Encapsulation

Encapsulation involves hiding the internal details of an object and exposing only what is necessary. In JavaScript, we achieve this by using private fields (with #) in class-based OOP or closures in prototype-based OOP.

Class-Based Example:

class Animal {
  speak() {
    console.log("Animal makes a sound.");
  }
}

class Dog extends Animal {
  speak() {
    console.log("Dog barks.");
  }
}

class Cat extends Animal {
  speak() {
    console.log("Cat meows.");
  }
}

const animals = [new Dog(), new Cat()];

animals.forEach(animal => animal.speak());
// Output:
// Dog barks.
// Cat meows.

Prototype-Based Example:

function Animal() {}

Animal.prototype.speak = function() {
  console.log("Animal makes a sound.");
};

function Dog() {}

Dog.prototype = Object.create(Animal.prototype);
Dog.prototype.speak = function() {
  console.log("Dog barks.");
};

function Cat() {}

Cat.prototype = Object.create(Animal.prototype);
Cat.prototype.speak = function() {
  console.log("Cat meows.");
};

const animals = [new Dog(), new Cat()];
animals.forEach(animal => animal.speak());
// Output:
// Dog barks.
// Cat meows.

Explanation:

  • Class-based encapsulation uses private fields (introduced in ES6) to hide data, while prototype-based encapsulation achieves privacy through closures.

6. Abstraction

Abstraction hides complex logic and only exposes necessary details. It can be achieved by abstracting away internal details and exposing essential methods.

Class-Based Example:

// Assigning a function to a variable
const greet = function(name) {
  return `Hello, ${name}!`;
};

// Passing a function as an argument
function logGreeting(fn, name) {
  console.log(fn(name));
}

// Returning a function
function createMultiplier(multiplier) {
  return function(number) {
    return number * multiplier;
  };
}

logGreeting(greet, "John");  // Output: Hello, John!

const double = createMultiplier(2);
console.log(double(5));  // Output: 10

Prototype-Based Example:

class Greeter {
  constructor(name) {
    this.name = name;
  }

  greet() {
    return `Hello, ${this.name}!`;
  }
}

// Logging greeting
class Logger {
  static logGreeting(greeter) {
    console.log(greeter.greet());
  }
}

// Using classes to demonstrate first-class functions
const greeter = new Greeter("John");
Logger.logGreeting(greeter); // Output: Hello, John!

Explanation:

  • Both approaches encapsulate the complexity of managing battery levels, exposing only the necessary methods for interaction.

Conclusion

Understanding the differences and similarities between class-based and prototype-based OOP in JavaScript enhances your programming skills. First-class functions and instances, inheritance, polymorphism, encapsulation, and abstraction are fundamental concepts that you can leverage to write cleaner and more maintainable code.

While the modern class-based syntax (introduced in ES6) is more readable and familiar to developers coming from other OOP languages, the prototype-based approach is more fundamental to JavaScript's underlying behavior.

This blog demonstrates how core OOP concepts — first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction — can be achieved in both paradigms. Whether you're using classes or prototypes, JavaScript offers robust mechanisms to implement OOP in a flexible and powerful way.


The above is the detailed content of JavaScript OOP Concepts: Class-Based vs. Prototype-Based. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1488
72
How to make an HTTP request in Node.js? How to make an HTTP request in Node.js? Jul 13, 2025 am 02:18 AM

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

JavaScript Data Types: Primitive vs Reference JavaScript Data Types: Primitive vs Reference Jul 13, 2025 am 02:43 AM

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

React vs Angular vs Vue: which js framework is best? React vs Angular vs Vue: which js framework is best? Jul 05, 2025 am 02:24 AM

Which JavaScript framework is the best choice? The answer is to choose the most suitable one according to your needs. 1.React is flexible and free, suitable for medium and large projects that require high customization and team architecture capabilities; 2. Angular provides complete solutions, suitable for enterprise-level applications and long-term maintenance; 3. Vue is easy to use, suitable for small and medium-sized projects or rapid development. In addition, whether there is an existing technology stack, team size, project life cycle and whether SSR is needed are also important factors in choosing a framework. In short, there is no absolutely the best framework, the best choice is the one that suits your needs.

JavaScript time object, someone builds an eactexe, faster website on Google Chrome, etc. JavaScript time object, someone builds an eactexe, faster website on Google Chrome, etc. Jul 08, 2025 pm 02:27 PM

Hello, JavaScript developers! Welcome to this week's JavaScript news! This week we will focus on: Oracle's trademark dispute with Deno, new JavaScript time objects are supported by browsers, Google Chrome updates, and some powerful developer tools. Let's get started! Oracle's trademark dispute with Deno Oracle's attempt to register a "JavaScript" trademark has caused controversy. Ryan Dahl, the creator of Node.js and Deno, has filed a petition to cancel the trademark, and he believes that JavaScript is an open standard and should not be used by Oracle

What is the cache API and how is it used with Service Workers? What is the cache API and how is it used with Service Workers? Jul 08, 2025 am 02:43 AM

CacheAPI is a tool provided by the browser to cache network requests, which is often used in conjunction with ServiceWorker to improve website performance and offline experience. 1. It allows developers to manually store resources such as scripts, style sheets, pictures, etc.; 2. It can match cache responses according to requests; 3. It supports deleting specific caches or clearing the entire cache; 4. It can implement cache priority or network priority strategies through ServiceWorker listening to fetch events; 5. It is often used for offline support, speed up repeated access speed, preloading key resources and background update content; 6. When using it, you need to pay attention to cache version control, storage restrictions and the difference from HTTP caching mechanism.

Handling Promises: Chaining, Error Handling, and Promise Combinators in JavaScript Handling Promises: Chaining, Error Handling, and Promise Combinators in JavaScript Jul 08, 2025 am 02:40 AM

Promise is the core mechanism for handling asynchronous operations in JavaScript. Understanding chain calls, error handling and combiners is the key to mastering their applications. 1. The chain call returns a new Promise through .then() to realize asynchronous process concatenation. Each .then() receives the previous result and can return a value or a Promise; 2. Error handling should use .catch() to catch exceptions to avoid silent failures, and can return the default value in catch to continue the process; 3. Combinators such as Promise.all() (successfully successful only after all success), Promise.race() (the first completion is returned) and Promise.allSettled() (waiting for all completions)

Leveraging Array.prototype Methods for Data Manipulation in JavaScript Leveraging Array.prototype Methods for Data Manipulation in JavaScript Jul 06, 2025 am 02:36 AM

JavaScript array built-in methods such as .map(), .filter() and .reduce() can simplify data processing; 1) .map() is used to convert elements one to one to generate new arrays; 2) .filter() is used to filter elements by condition; 3) .reduce() is used to aggregate data as a single value; misuse should be avoided when used, resulting in side effects or performance problems.

JS roundup: a deep dive into the JavaScript event loop JS roundup: a deep dive into the JavaScript event loop Jul 08, 2025 am 02:24 AM

JavaScript's event loop manages asynchronous operations by coordinating call stacks, WebAPIs, and task queues. 1. The call stack executes synchronous code, and when encountering asynchronous tasks, it is handed over to WebAPI for processing; 2. After the WebAPI completes the task in the background, it puts the callback into the corresponding queue (macro task or micro task); 3. The event loop checks whether the call stack is empty. If it is empty, the callback is taken out from the queue and pushed into the call stack for execution; 4. Micro tasks (such as Promise.then) take precedence over macro tasks (such as setTimeout); 5. Understanding the event loop helps to avoid blocking the main thread and optimize the code execution order.

See all articles