亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Inhaltsverzeichnis
Wie benutze ich eine sch?ne Suppe, um HTML zu analysieren? Es erstellt einen Parse -Baum aus dem angegebenen HTML, sodass Sie die Daten problemlos navigieren, suchen und ?ndern k?nnen. Um es zu verwenden, müssen Sie es zun?chst mit PIP installieren: PIP Installieren Sie BeautifulSoup4 . Dann k?nnen Sie es in Ihr Python -Skript importieren und HTML -Inhalte analysieren. Hier ist ein grundlegendes Beispiel: %%PRE_BLOCK_0%%
Heim Backend-Entwicklung Python-Tutorial Wie benutze ich eine sch?ne Suppe, um HTML zu analysieren?

Wie benutze ich eine sch?ne Suppe, um HTML zu analysieren?

Mar 10, 2025 pm 06:54 PM

Wie benutze ich eine sch?ne Suppe, um HTML zu analysieren? Es erstellt einen Parse -Baum aus dem angegebenen HTML, sodass Sie die Daten problemlos navigieren, suchen und ?ndern k?nnen. Um es zu verwenden, müssen Sie es zun?chst mit PIP installieren: PIP Installieren Sie BeautifulSoup4 . Dann k?nnen Sie es in Ihr Python -Skript importieren und HTML -Inhalte analysieren. Hier ist ein grundlegendes Beispiel:
 <code class="python"> aus bs4 importieren BeautifulSoup -Importanfragen # Abrufen Sie den HTML -Inhalt (ersetzen Sie durch Ihre URL) url = & quot; https: //www.example.com" response = requests.get (url) response.raise_for_status () # httperror für schlechte Antworten (4xx oder 5xx) html_content = response Title Tag Print (Suppe.find_all (& quot; p & quot;)) # Drucken alle Absatz -Tags </code> 

Dieser Code holt zuerst HTML von einer URL mit der -Anfragen Bibliothek ab (Sie müssen es separat mit PIP -Anforderungen installieren). Anschlie?end wird der Konstruktor BeautifulSoup den HTML -Inhalt analysiert und "html.parser" als Parser angeben. Schlie?lich zeigt es den Zugriff auf den & lt; title & gt; Tag und das Finden aller & lt; p & gt; Denken Sie daran, potenzielle Ausnahmen wie Netzwerkfehler (<code> -Answerte "zu behandeln. Zu den h?ufigsten geh?ren:

  • Find () und find_all () : Dies sind die Arbeitspl?tze der sch?nen Suppe. find () Gibt das erste Tag zurück, das mit den angegebenen Kriterien übereinstimmt, w?hrend find_all () eine Liste aller übereinstimmenden Tags zurückgibt. Kriterien k?nnen ein Tag-Name (z. B. "P", "A"), Attribute (z. B. {"Klasse": "My-Class", "ID": "my-id"}) oder eine Kombination aus beiden sein. Sie k?nnen auch regul?re Ausdrücke für komplexere übereinstimmungen verwenden. Dies ist eine leistungsstarke und pr?zise M?glichkeit, um bestimmte Elemente zu zielen, insbesondere wenn es sich um komplexe HTML -Strukturen handelt. Zum Beispiel Suppe.Select (".My-Klasse P & quot;) wird alle & lt; p & gt; Tags in Elementen mit der Klasse" my-class "finden. Es ist von unsch?tzbarem Wert, um den tats?chlichen Text von HTML -Elementen zu erhalten. Zum Beispiel wird tag [& quot; href & quot;] den Wert des href Attribut eines & lt; a & gt; Tag. .Next_sibling , .previous_sibling usw. Diese Methoden erm?glichen das Durchführen der HTML -Struktur, um verwandte Elemente zu finden. class = "python"># ... (vorheriger Code, um Suppe zu erhalten) ... first_paragraph = ups.find (& quot; p & quot;) all_paragraphs = ups.find_all (& quot; p & quot;) first_priaph_text = first_paragraph.get_text () print (f & quot;). Abs?tze: {len (All_Paragraphs)} & quot;)

    Wie kann ich verschiedene HTML -Strukturen und potenzielle Fehler mit einer sch?nen Suppe bew?ltigen? Um Variationen und potenzielle Fehler zu bew?ltigen, berücksichtigen Sie diese Strategien:
    • Robustes Parsen: Verwenden Sie einen verzeihenden Parser wie "html.parser" (der Standard), der in Python eingebaut ist. Es ist besser beim Umgang mit missgebildetem HTML als andere Parser wie "lxml" (was schneller, aber strenger ist). mit unerwarteten Datentypen).
    • Flexible Auswahl: Verwenden Sie CSS -Selektoren oder flexible Attributübereinstimmungen in find () und find_all () , um Variationen in der HTML -Struktur aufzunehmen. Anstatt sich auf bestimmte Klassennamen oder IDs zu verlassen, die sich ?ndern k?nnen, sollten Sie mehr allgemeinere Selektoren oder Attribute verwenden. Verwenden Sie bedingte Anweisungen (z. B. Wenn Element: ).
    • Datenreinigung: Nach dem Extraktion die Daten, um Inkonsistenzen wie zus?tzliche Whitespace, Newline -Zeichen oder HTML -Entit?ten zu verarbeiten. Pythons Strip () Methode und regul?re Ausdrücke sind dafür hilfreich. Nicht gefunden. Sch?ne Suppe arbeitet mit der ursprünglich heruntergeladenen HTML. Es führt JavaScript nicht aus. JavaScript rendert den Inhalt dynamisch nach dem Laden der Seite, so dass die sch?ne Suppe nur den anf?nglichen, statischen html sieht. Es wird die Seite vollst?ndig geladen, sodass JavaScript ausgeführt werden kann. Anschlie?end k?nnen Sie sch?ne Suppe verwenden, um das resultierende HTML aus dem Dom des Browsers zu analysieren. Dies ist eine leistungsstarke, aber langsamere Methode. Es ist oft schneller und moderner als Selen. Rendering-Dienste: Mehrere Cloud-basierte Dienste bieten JavaScript-Rendering-Funktionen. Dies sind normalerweise bezahlte Dienste, k?nnen jedoch für ein gro? angelegtes Scraping bequem sein. überm??iges Schaber kann Server überlasten und dazu führen, dass Ihre IP -Adresse blockiert wird.

Das obige ist der detaillierte Inhalt vonWie benutze ich eine sch?ne Suppe, um HTML zu analysieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

PHP-Tutorial
1488
72
Polymorphismus in Pythonklassen Polymorphismus in Pythonklassen Jul 05, 2025 am 02:58 AM

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Erkl?ren Sie Python -Generatoren und Iteratoren. Erkl?ren Sie Python -Generatoren und Iteratoren. Jul 05, 2025 am 02:55 AM

Iteratoren sind Objekte, die __iter __ () und __next __ () Methoden implementieren. Der Generator ist eine vereinfachte Version von Iteratoren, die diese Methoden automatisch über das Keyword für Rendite implementiert. 1. Der Iterator gibt jedes Mal, wenn er als n?chstes anruft, ein Element zurück und wirft eine Ausnahme in der Stopperation aus, wenn es keine Elemente mehr gibt. 2. Der Generator verwendet Funktionsdefinition, um Daten auf Bedarf zu generieren, Speicher zu speichern und unendliche Sequenzen zu unterstützen. 3. Verwenden Sie Iteratoren, wenn Sie vorhandene S?tze verarbeiten, und verwenden Sie einen Generator, wenn Sie dynamisch Big Data oder faule Bewertung generieren, z. B. das Laden von Zeilen nach Zeile beim Lesen gro?er Dateien. Hinweis: Iterbare Objekte wie Listen sind keine Iteratoren. Sie müssen nach dem Erreichen des Iterators nach seinem Ende nachgebaut werden, und der Generator kann ihn nur einmal durchqueren.

Wie man mit der API -Authentifizierung in Python umgeht Wie man mit der API -Authentifizierung in Python umgeht Jul 13, 2025 am 02:22 AM

Der Schlüssel zum Umgang mit der API -Authentifizierung besteht darin, die Authentifizierungsmethode korrekt zu verstehen und zu verwenden. 1. Apikey ist die einfachste Authentifizierungsmethode, die normalerweise in den Anforderungsheader- oder URL -Parametern platziert ist. 2. BasicAuth verwendet Benutzername und Kennwort für die Basis64 -Codierungsübertragung, die für interne Systeme geeignet ist. 3.. OAuth2 muss das Token zuerst über Client_id und Client_secret erhalten und dann das BearerToken in den Anforderungsheader bringen. V. Kurz gesagt, die Auswahl der entsprechenden Methode gem?? dem Dokument und das sichere Speichern der Schlüsselinformationen ist der Schlüssel.

Erkl?ren Sie Python -Behauptungen. Erkl?ren Sie Python -Behauptungen. Jul 07, 2025 am 12:14 AM

Assert ist ein Inssertion -Tool, das in Python zum Debuggen verwendet wird, und wirft einen Assertionerror aus, wenn der Zustand nicht erfüllt ist. Die Syntax ist eine geltende Bedingung sowie optionale Fehlerinformationen, die für die interne Logiküberprüfung geeignet sind, z. B. Parameterprüfung, Statusbest?tigung usw., k?nnen jedoch nicht für die Sicherheits- oder Benutzereingabeprüfung verwendet werden und sollten in Verbindung mit klaren Eingabeaufforderungen verwendet werden. Es ist nur zum Hilfsdebuggen in der Entwicklungsphase verfügbar, anstatt die Ausnahmebehandlung zu ersetzen.

Wie man über zwei Listen gleichzeitig python iteriert Wie man über zwei Listen gleichzeitig python iteriert Jul 09, 2025 am 01:13 AM

Eine gemeinsame Methode, um zwei Listen gleichzeitig in Python zu durchqueren, besteht darin, die Funktion ZIP () zu verwenden, die mehrere Listen in der Reihenfolge und die kürzeste ist. Wenn die Listenl?nge inkonsistent ist, k?nnen Sie iTertools.zip_longest () verwenden, um die l?ngste zu sein und die fehlenden Werte auszufüllen. In Kombination mit Enumerate () k?nnen Sie den Index gleichzeitig erhalten. 1.zip () ist pr?gnant und praktisch, geeignet für die Iteration gepaarte Daten; 2.zip_longest () kann den Standardwert beim Umgang mit inkonsistenten L?ngen einfüllen. 3.Enumerate (ZIP ()) kann w?hrend des Durchlaufens Indizes erhalten und die Bedürfnisse einer Vielzahl komplexer Szenarien erfüllen.

Was sind Python -Iteratoren? Was sind Python -Iteratoren? Jul 08, 2025 am 02:56 AM

INPYTHON, ITERATORATORSAROBJECTSHATALWOULOUPING ThroughCollections Byimplementing__iter __ () und __Next __ (). 1) IteratorsworkviATheiterProtocol, verwendete __iter __ () toreturn thiteratorand__Next __ () torethentexteemtemuntemuntilstoperationSaised.2) und

Was sind Python -Typ -Hinweise? Was sind Python -Typ -Hinweise? Jul 07, 2025 am 02:55 AM

TypHintsinpythonsolvetheProblemofAmbiguityAndpotentialbugsindynamicalpedCodeByAllowingDevelopstospecifyexpectypes

Python Fastapi Tutorial Python Fastapi Tutorial Jul 12, 2025 am 02:42 AM

Um moderne und effiziente APIs mit Python zu schaffen, wird Fastapi empfohlen. Es basiert auf Eingabeaufforderungen an Standardpython -Typ und kann automatisch Dokumente mit ausgezeichneter Leistung generieren. Nach der Installation von Fastapi und ASGI Server Uvicorn k?nnen Sie Schnittstellencode schreiben. Durch das Definieren von Routen, das Schreiben von Verarbeitungsfunktionen und die Rückgabe von Daten kann schnell APIs erstellt werden. Fastapi unterstützt eine Vielzahl von HTTP -Methoden und bietet automatisch generierte Swaggerui- und Redoc -Dokumentationssysteme. URL -Parameter k?nnen durch Pfaddefinition erfasst werden, w?hrend Abfrageparameter durch Einstellen von Standardwerten für Funktionsparameter implementiert werden k?nnen. Der rationale Einsatz pydantischer Modelle kann dazu beitragen, die Entwicklungseffizienz und Genauigkeit zu verbessern.

See all articles