亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Heim Backend-Entwicklung Python-Tutorial [CVHSV vs. RGB: HSV für die Bildverarbeitung verstehen und nutzen

[CVHSV vs. RGB: HSV für die Bildverarbeitung verstehen und nutzen

Dec 19, 2024 am 10:33 AM

Im vorherigen Beitrag haben wir die Grundlagen der Arbeit mit RGB-Bildern in OpenCV untersucht, einschlie?lich des Plottens und Anpassens von Helligkeit und Kontrast. W?hrend der RGB-Farbraum ideal für Computerdisplays ist, da er Farben anhand der von Bildschirmen ausgestrahlten Lichtintensit?t darstellt, stimmt er nicht mit der Art und Weise überein, wie Menschen Farben in der natürlichen Welt wahrnehmen. Hier kommt HSV (Hue, Saturation, Value) ins Spiel – ein Farbraum, der Farben auf eine Art und Weise darstellen soll, die der menschlichen Wahrnehmung n?her kommt.
In diesem Beitrag tauchen wir in HSV ein, verstehen seine Komponenten, erkunden seine Anwendungen und lernen einige coole Tricks zum Verbessern von Bildern.

Was ist HSV?

HSV steht für Farbton, S?ttigung und Wert:

  • Farbton (H): Dies bezieht sich auf die Art der Farbe – Rot, Grün, Blau usw. W?hrend der Farbton traditionell in Grad auf einem kreisf?rmigen Spektrum (0°–360°) gemessen wird, wird er in OpenCV auf 0 skaliert –179, um in eine 8-Bit-Ganzzahl zu passen. Hier ist die Zuordnung:
  • 0 (oder nahe daran) steht immer noch für Rot.
  • 60–89 entspricht Grün.
  • 120–149 entspricht Blau.
  • 140–179 wird wieder rot und vervollst?ndigt das kreisf?rmige Spektrum.
  • S?ttigung (S): Dies definiert die Intensit?t oder Reinheit einer Farbe: Eine vollst?ndig ges?ttigte Farbe enth?lt kein Grau und ist lebendig. Eine weniger ges?ttigte Farbe erscheint verwaschener.

  • Wert (V): Wird oft als Helligkeit bezeichnet und misst die Helligkeit oder Dunkelheit von. Durch die Trennung dieser Komponenten erleichtert HSV die Analyse und Bearbeitung von Bildern, insbesondere für Aufgaben wie Farberkennung oder -verbesserung. die Farbe.

Um dies besser zu verstehen, ist der Plot Blow eine gute Darstellung der Werte im Farbraum

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Konvertieren eines Bildes in HSV in OpenCV

Das Konvertieren eines Bilds in HSV in OpenCV ist mit der Funktion cv2.cvtColor() ganz einfach. Werfen wir einen Blick darauf:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Auf den ersten Blick k?nnte die HSV-Handlung seltsam wirken – fast schon fremdartig. Das liegt daran, dass Ihr Computer versucht, HSV als RGB-Bild darzustellen, obwohl die Komponenten von HSV (insbesondere Farbton) nicht direkt RGB-Werten zugeordnet sind. Zum Beispiel:

  • Farbton (H): Wird als Winkel dargestellt und reicht in OpenCV von 0 bis 179 (nicht 0 bis 255 wie RGB-Kan?le). Dies führt dazu, dass der Farbtonkanal in RGB-basierten Diagrammen überwiegend blau erscheint.

Für die n?chsten folgenden Beispiele verwenden wir nicht das Profilbild, sondern ein dunkleres Bild, das mit dem Flux AI Image Gen-Modell generiert wurde. da es einen besseren Benutzerfall von HSV bietet als das Profilbild, da wir seine Wirkung besser sehen k?nnen

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

HSV anhand von Histogrammen verstehen

Um die Unterschiede zwischen RGB und HSV besser zu verstehen, zeichnen wir Histogramme für jeden Kanal. Hier ist der Code:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Anhand der Histogramme k?nnen Sie sehen, wie sich die HSV-Kan?le von RGB unterscheiden. Beachten Sie den Farbtonkanal in HSV, der Werte zwischen 0 und 179 hat, die unterschiedliche Farbbereiche darstellen, w?hrend S?ttigung und Wert Intensit?t und Helligkeit verwalten.

Visualisierung von Farbton, S?ttigung und Wert

Lassen Sie uns nun das HSV-Image in seine einzelnen Komponenten zerlegen, um besser zu verstehen, was jeder Kanal darstellt:

# Plot the histograms
plt.figure(figsize=(10, 6))

# RGB Histogram
plt.subplot(1, 2, 1)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("RGB Histogram")

# HSV Histogram
plt.subplot(1, 2, 2)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("HSV Histogram")
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

  • Farbton: Zeigt klare Farbunterscheidungen an und hebt die dominanten Farben im Bild hervor.
  • S?ttigung: Hellere Bereiche stehen für lebendige Farben, w?hrend dunklere Bereiche für ged?mpftere Graut?ne stehen.
  • Wert: Hebt die Helligkeitsverteilung hervor, wobei gut beleuchtete Bereiche heller erscheinen.

Tricks mit dem HSV

1. Helligkeitsverbesserung (Wertausgleich)

Bei Bildern mit ungleichm??iger Beleuchtung kann der Ausgleich des Value-Kanals dazu führen, dass dunklere Bereiche besser sichtbar werden, w?hrend hellere Bereiche einen ?Leuchteffekt“ erhalten.

# Plot the individual HSV channels
plt.figure(figsize=(10, 6))
plt.subplot(1, 3, 1)
plt.imshow(hsv[:, :, 0], cmap='hsv')  # Hue
plt.title("Hue")
plt.subplot(1, 3, 2)
plt.imshow(hsv[:, :, 1], cmap='gray')  # Saturation
plt.title("Saturation")
plt.subplot(1, 3, 3)
plt.imshow(hsv[:, :, 2], cmap='gray')  # Value
plt.title("Value")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

2. Farbverbesserung (S?ttigungsausgleich)

Durch die Verst?rkung des S?ttigungskanals werden die Farben im Bild deutlicher und lebendiger.

equ = cv2.equalizeHist(hsv[:, :, 2])  # Equalize the Value channel
new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Brightness Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

3. Farbfilterung (Rot isolieren)

Mithilfe des Hue-Kanals k?nnen wir bestimmte Farben isolieren. Um beispielsweise Rott?ne zu extrahieren:

equ = cv2.equalizeHist(hsv[:, :, 1])  # Equalize the Saturation channel
new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2]))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Color Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Diese Technik ist unglaublich nützlich für Aufgaben wie Objekterkennung, Farbsegmentierung oder sogar künstlerische Effekte.

Abschluss

Der HSV-Farbraum bietet eine vielseitige und intuitive M?glichkeit, Bilder zu analysieren und zu bearbeiten. Durch die Trennung von Farbe (Farbton), Intensit?t (S?ttigung) und Helligkeit (Wert) vereinfacht HSV Aufgaben wie Farbfilterung, -verbesserung und -segmentierung. W?hrend RGB ideal für Displays ist, er?ffnet HSV M?glichkeiten für die kreative und analytische Bildverarbeitung.

Was ist dein Lieblingstrick beim HSV? Teilen Sie unten Ihre Gedanken mit und lassen Sie uns gemeinsam diese lebendige Welt der Farben erkunden!

Diese Version verfügt über einen reibungslosen Ablauf, detaillierte Erkl?rungen und eine konsistente Formatierung, um die Lesbarkeit und das Verst?ndnis zu verbessern.

Das obige ist der detaillierte Inhalt von[CVHSV vs. RGB: HSV für die Bildverarbeitung verstehen und nutzen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

PHP-Tutorial
1488
72
Polymorphismus in Pythonklassen Polymorphismus in Pythonklassen Jul 05, 2025 am 02:58 AM

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Erkl?ren Sie Python -Generatoren und Iteratoren. Erkl?ren Sie Python -Generatoren und Iteratoren. Jul 05, 2025 am 02:55 AM

Iteratoren sind Objekte, die __iter __ () und __next __ () Methoden implementieren. Der Generator ist eine vereinfachte Version von Iteratoren, die diese Methoden automatisch über das Keyword für Rendite implementiert. 1. Der Iterator gibt jedes Mal, wenn er als n?chstes anruft, ein Element zurück und wirft eine Ausnahme in der Stopperation aus, wenn es keine Elemente mehr gibt. 2. Der Generator verwendet Funktionsdefinition, um Daten auf Bedarf zu generieren, Speicher zu speichern und unendliche Sequenzen zu unterstützen. 3. Verwenden Sie Iteratoren, wenn Sie vorhandene S?tze verarbeiten, und verwenden Sie einen Generator, wenn Sie dynamisch Big Data oder faule Bewertung generieren, z. B. das Laden von Zeilen nach Zeile beim Lesen gro?er Dateien. Hinweis: Iterbare Objekte wie Listen sind keine Iteratoren. Sie müssen nach dem Erreichen des Iterators nach seinem Ende nachgebaut werden, und der Generator kann ihn nur einmal durchqueren.

Wie man mit der API -Authentifizierung in Python umgeht Wie man mit der API -Authentifizierung in Python umgeht Jul 13, 2025 am 02:22 AM

Der Schlüssel zum Umgang mit der API -Authentifizierung besteht darin, die Authentifizierungsmethode korrekt zu verstehen und zu verwenden. 1. Apikey ist die einfachste Authentifizierungsmethode, die normalerweise in den Anforderungsheader- oder URL -Parametern platziert ist. 2. BasicAuth verwendet Benutzername und Kennwort für die Basis64 -Codierungsübertragung, die für interne Systeme geeignet ist. 3.. OAuth2 muss das Token zuerst über Client_id und Client_secret erhalten und dann das BearerToken in den Anforderungsheader bringen. V. Kurz gesagt, die Auswahl der entsprechenden Methode gem?? dem Dokument und das sichere Speichern der Schlüsselinformationen ist der Schlüssel.

Erkl?ren Sie Python -Behauptungen. Erkl?ren Sie Python -Behauptungen. Jul 07, 2025 am 12:14 AM

Assert ist ein Inssertion -Tool, das in Python zum Debuggen verwendet wird, und wirft einen Assertionerror aus, wenn der Zustand nicht erfüllt ist. Die Syntax ist eine geltende Bedingung sowie optionale Fehlerinformationen, die für die interne Logiküberprüfung geeignet sind, z. B. Parameterprüfung, Statusbest?tigung usw., k?nnen jedoch nicht für die Sicherheits- oder Benutzereingabeprüfung verwendet werden und sollten in Verbindung mit klaren Eingabeaufforderungen verwendet werden. Es ist nur zum Hilfsdebuggen in der Entwicklungsphase verfügbar, anstatt die Ausnahmebehandlung zu ersetzen.

Wie man über zwei Listen gleichzeitig python iteriert Wie man über zwei Listen gleichzeitig python iteriert Jul 09, 2025 am 01:13 AM

Eine gemeinsame Methode, um zwei Listen gleichzeitig in Python zu durchqueren, besteht darin, die Funktion ZIP () zu verwenden, die mehrere Listen in der Reihenfolge und die kürzeste ist. Wenn die Listenl?nge inkonsistent ist, k?nnen Sie iTertools.zip_longest () verwenden, um die l?ngste zu sein und die fehlenden Werte auszufüllen. In Kombination mit Enumerate () k?nnen Sie den Index gleichzeitig erhalten. 1.zip () ist pr?gnant und praktisch, geeignet für die Iteration gepaarte Daten; 2.zip_longest () kann den Standardwert beim Umgang mit inkonsistenten L?ngen einfüllen. 3.Enumerate (ZIP ()) kann w?hrend des Durchlaufens Indizes erhalten und die Bedürfnisse einer Vielzahl komplexer Szenarien erfüllen.

Was sind Python -Iteratoren? Was sind Python -Iteratoren? Jul 08, 2025 am 02:56 AM

INPYTHON, ITERATORATORSAROBJECTSHATALWOULOUPING ThroughCollections Byimplementing__iter __ () und __Next __ (). 1) IteratorsworkviATheiterProtocol, verwendete __iter __ () toreturn thiteratorand__Next __ () torethentexteemtemuntemuntilstoperationSaised.2) und

Was sind Python -Typ -Hinweise? Was sind Python -Typ -Hinweise? Jul 07, 2025 am 02:55 AM

TypHintsinpythonsolvetheProblemofAmbiguityAndpotentialbugsindynamicalpedCodeByAllowingDevelopstospecifyexpectypes

Python Fastapi Tutorial Python Fastapi Tutorial Jul 12, 2025 am 02:42 AM

Um moderne und effiziente APIs mit Python zu schaffen, wird Fastapi empfohlen. Es basiert auf Eingabeaufforderungen an Standardpython -Typ und kann automatisch Dokumente mit ausgezeichneter Leistung generieren. Nach der Installation von Fastapi und ASGI Server Uvicorn k?nnen Sie Schnittstellencode schreiben. Durch das Definieren von Routen, das Schreiben von Verarbeitungsfunktionen und die Rückgabe von Daten kann schnell APIs erstellt werden. Fastapi unterstützt eine Vielzahl von HTTP -Methoden und bietet automatisch generierte Swaggerui- und Redoc -Dokumentationssysteme. URL -Parameter k?nnen durch Pfaddefinition erfasst werden, w?hrend Abfrageparameter durch Einstellen von Standardwerten für Funktionsparameter implementiert werden k?nnen. Der rationale Einsatz pydantischer Modelle kann dazu beitragen, die Entwicklungseffizienz und Genauigkeit zu verbessern.

See all articles