亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

首頁 后端開發(fā) Python教程 在 Python 中使用 LASER 嵌入進行文本標識符的語義匹配

在 Python 中使用 LASER 嵌入進行文本標識符的語義匹配

Nov 25, 2024 am 05:33 AM

Semantic Matching of Text Identifiers Using LASER Embeddings in Python

使用 OCR 數(shù)字化財務(wù)報告時,您可能會遇到各種方法來檢測這些報告中的特定類別。例如,像 Levenshtein 算法這樣的傳統(tǒng)方法可以用于基于編輯距離的字符串匹配,使其能夠有效地處理近似匹配,例如糾正拼寫錯誤或文本中的微小變化。

但是,當您需要在報告的一行中檢測多個類別時,尤其是當這些類別可能不完全按照預(yù)期顯示或可能在語義上重疊時,挑戰(zhàn)會變得更加復(fù)雜。

在這篇文章中,我們分析了使用 Facebook 的 LASER(與語言無關(guān)的 SEntence Representations)嵌入的語義匹配方法,展示了它如何有效地處理此任務(wù)。

問題

目標是識別給定文本行中的特定財務(wù)術(shù)語(類別)。假設(shè)我們有一組固定的預(yù)定義類別,代表所有可能感興趣的術(shù)語,例如:

[“收入”、“營業(yè)費用”、“營業(yè)利潤”、“折舊”、“利息”、“凈利潤”、“稅金”、“稅后利潤”、“指標 1”]

給定一個輸入行,例如:

“營業(yè)利潤、凈利潤和稅后利潤”

我們的目標是檢測此行中出現(xiàn)哪些標識符。

激光語義匹配

我們不依賴精確或模糊的文本匹配,而是使用語義相似性。這種方法利用激光嵌入來捕獲文本的語義,并使用余弦相似度進行比較。

執(zhí)行

預(yù)處理文本

在嵌入之前,通過將文本轉(zhuǎn)換為小寫并刪除多余的空格來對文本進行預(yù)處理。這確保了一致性。

def preprocess(text):
    return text.lower().strip()

嵌入標識符和輸入線

激光編碼器為標識符列表和輸入/OCR 行生成標準化嵌入。

identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True)
ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]

按特異性對標識符進行排名

較長的標識符會根據(jù)字數(shù)進行排序。這有助于處理嵌套匹配,其中較長的標識符可能包含較短的標識符(例如,“稅后利潤”包含“利潤”)。

ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True)
ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)

計算相似度

使用余弦相似度,我們測量每個標識符與輸入行在語義上的相似程度。相似度高于指定閾值的標識符被視為匹配。

matches = []
threshold = 0.6

for idx, identifier_embedding in enumerate(ranked_embeddings):
    similarity = cosine_similarity([identifier_embedding], [ocr_line_embedding])[0][0]
    if similarity >= threshold:
        matches.append((ranked_identifiers[idx], similarity))

解析嵌套匹配

為了處理重疊的標識符,會優(yōu)先考慮較長的匹配,確保排除其中較短的匹配。

def preprocess(text):
    return text.lower().strip()

結(jié)果

執(zhí)行代碼時,輸??出會提供檢測到的匹配項及其相似度分數(shù)的列表。對于示例輸入:

identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True)
ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]

較長且復(fù)雜的輸入的注意事項

此方法適用于單行包含多個類別的結(jié)構(gòu)化財務(wù)報告,前提是沒有太多類別或太多不相關(guān)的文本。然而,隨著較長、復(fù)雜的輸入或非結(jié)構(gòu)化的用戶生成的文本的出現(xiàn),準確性可能會降低,因為嵌入可能很難專注于相關(guān)類別。對于嘈雜或不可預(yù)測的輸入,它的可靠性較差。

結(jié)論

這篇文章演示了激光嵌入如何成為檢測文本中多個類別的有用工具。這是最好的選擇嗎?也許不是,但這肯定是值得考慮的選項之一,尤其是在處理傳統(tǒng)匹配技術(shù)可能無法滿足的復(fù)雜場景時。

完整代碼

ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True)
ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)

以上是在 Python 中使用 LASER 嵌入進行文本標識符的語義匹配的詳細內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻,版權(quán)歸原作者所有,本站不承擔(dān)相應(yīng)法律責(zé)任。如您發(fā)現(xiàn)有涉嫌抄襲侵權(quán)的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機

Video Face Swap

Video Face Swap

使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實現(xiàn)”,允許統(tǒng)一處理不同類型的對象。1.多態(tài)通過方法重寫實現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實現(xiàn)。2.多態(tài)的實際用途包括簡化代碼結(jié)構(gòu)、增強可擴展性,例如圖形繪制程序中統(tǒng)一調(diào)用draw()方法,或游戲開發(fā)中處理不同角色的共同行為。3.Python實現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對象實現(xiàn)相同方法即可,這稱為“鴨子類型”。4.注意事項包括保持方

Python函數(shù)參數(shù)和參數(shù) Python函數(shù)參數(shù)和參數(shù) Jul 04, 2025 am 03:26 AM

參數(shù)(parameters)是定義函數(shù)時的占位符,而傳參(arguments)是調(diào)用時傳入的具體值。1.位置參數(shù)需按順序傳遞,順序錯誤會導(dǎo)致結(jié)果錯誤;2.關(guān)鍵字參數(shù)通過參數(shù)名指定,可改變順序且提高可讀性;3.默認參數(shù)值在定義時賦值,避免重復(fù)代碼,但應(yīng)避免使用可變對象作為默認值;4.args和*kwargs可處理不定數(shù)量的參數(shù),適用于通用接口或裝飾器,但應(yīng)謹慎使用以保持可讀性。

解釋Python發(fā)電機和迭代器。 解釋Python發(fā)電機和迭代器。 Jul 05, 2025 am 02:55 AM

迭代器是實現(xiàn)__iter__()和__next__()方法的對象,生成器是簡化版的迭代器,通過yield關(guān)鍵字自動實現(xiàn)這些方法。1.迭代器每次調(diào)用next()返回一個元素,無更多元素時拋出StopIteration異常。2.生成器通過函數(shù)定義,使用yield按需生成數(shù)據(jù),節(jié)省內(nèi)存且支持無限序列。3.處理已有集合時用迭代器,動態(tài)生成大數(shù)據(jù)或需惰性求值時用生成器,如讀取大文件時逐行加載。注意:列表等可迭代對象不是迭代器,迭代器到盡頭后需重新創(chuàng)建,生成器只能遍歷一次。

python`@classmethod'裝飾師解釋了 python`@classmethod'裝飾師解釋了 Jul 04, 2025 am 03:26 AM

類方法是Python中通過@classmethod裝飾器定義的方法,其第一個參數(shù)為類本身(cls),用于訪問或修改類狀態(tài)。它可通過類或?qū)嵗{(diào)用,影響的是整個類而非特定實例;例如在Person類中,show_count()方法統(tǒng)計創(chuàng)建的對象數(shù)量;定義類方法時需使用@classmethod裝飾器并將首參命名為cls,如change_var(new_value)方法可修改類變量;類方法與實例方法(self參數(shù))、靜態(tài)方法(無自動參數(shù))不同,適用于工廠方法、替代構(gòu)造函數(shù)及管理類變量等場景;常見用途包括從

如何處理Python中的API身份驗證 如何處理Python中的API身份驗證 Jul 13, 2025 am 02:22 AM

處理API認證的關(guān)鍵在于理解并正確使用認證方式。1.APIKey是最簡單的認證方式,通常放在請求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過client_id和client_secret獲取Token,再在請求頭中帶上BearerToken;4.為應(yīng)對Token過期,可封裝Token管理類自動刷新Token;總之,根據(jù)文檔選擇合適方式,并安全存儲密鑰信息是關(guān)鍵。

什么是python魔法方法或dunder方法? 什么是python魔法方法或dunder方法? Jul 04, 2025 am 03:20 AM

Python的magicmethods(或稱dunder方法)是用于定義對象行為的特殊方法,它們以雙下劃線開頭和結(jié)尾。1.它們使對象能夠響應(yīng)內(nèi)置操作,如加法、比較、字符串表示等;2.常見用例包括對象初始化與表示(__init__、__repr__、__str__)、算術(shù)運算(__add__、__sub__、__mul__)及比較運算(__eq__、__lt__);3.使用時應(yīng)確保其行為符合預(yù)期,例如__repr__應(yīng)返回可重構(gòu)對象的表達式,算術(shù)方法應(yīng)返回新實例;4.應(yīng)避免過度使用或以令人困惑的方

Python內(nèi)存管理如何工作? Python內(nèi)存管理如何工作? Jul 04, 2025 am 03:26 AM

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

python`@property`裝飾師 python`@property`裝飾師 Jul 04, 2025 am 03:28 AM

@property是Python中用于將方法偽裝成屬性的裝飾器,允許在訪問屬性時執(zhí)行邏輯判斷或動態(tài)計算值。1.它通過@property裝飾器定義getter方法,使外部像訪問屬性一樣調(diào)用方法;2.搭配.setter可控制賦值行為,如校驗值合法性,不定義.setter則為只讀屬性;3.適用于屬性賦值校驗、動態(tài)生成屬性值、隱藏內(nèi)部實現(xiàn)細節(jié)等場景;4.使用時注意屬性名與私有變量名不同名,避免死循環(huán),適合輕量級操作;5.示例中Circle類限制radius非負,Person類動態(tài)生成full_name屬

See all articles