亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

首頁 后端開發(fā) Python教程 構(gòu)建企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與優(yōu)化

構(gòu)建企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與優(yōu)化

Nov 23, 2024 pm 01:46 PM

Building Enterprise Agent Systems: Core Component Design and Optimization

介紹

構(gòu)建企業(yè)級人工智能代理需要仔細(xì)考慮組件設(shè)計(jì)、系統(tǒng)架構(gòu)和工程實(shí)踐。本文探討了構(gòu)建健壯且可擴(kuò)展的代理系統(tǒng)的關(guān)鍵組件和最佳實(shí)踐。

1. 提示模板工程

1.1 模板設(shè)計(jì)模式

from typing import Protocol, Dict
from jinja2 import Template

class PromptTemplate(Protocol):
    def render(self, **kwargs) -> str:
        pass

class JinjaPromptTemplate:
    def __init__(self, template_string: str):
        self.template = Template(template_string)

    def render(self, **kwargs) -> str:
        return self.template.render(**kwargs)

class PromptLibrary:
    def __init__(self):
        self.templates: Dict[str, PromptTemplate] = {}

    def register_template(self, name: str, template: PromptTemplate):
        self.templates[name] = template

    def get_template(self, name: str) -> PromptTemplate:
        return self.templates[name]

1.2 版本控制和測試

class PromptVersion:
    def __init__(self, version: str, template: str, metadata: dict):
        self.version = version
        self.template = template
        self.metadata = metadata
        self.test_cases = []

    def add_test_case(self, inputs: dict, expected_output: str):
        self.test_cases.append((inputs, expected_output))

    def validate(self) -> bool:
        template = JinjaPromptTemplate(self.template)
        for inputs, expected in self.test_cases:
            result = template.render(**inputs)
            if not self._validate_output(result, expected):
                return False
        return True

2. 分層內(nèi)存系統(tǒng)

2.1 內(nèi)存架構(gòu)

from typing import Any, List
from datetime import datetime

class MemoryEntry:
    def __init__(self, content: Any, importance: float):
        self.content = content
        self.importance = importance
        self.timestamp = datetime.now()
        self.access_count = 0

class MemoryLayer:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.memories: List[MemoryEntry] = []

    def add(self, entry: MemoryEntry):
        if len(self.memories) >= self.capacity:
            self._evict()
        self.memories.append(entry)

    def _evict(self):
        # Implement memory eviction strategy
        self.memories.sort(key=lambda x: x.importance * x.access_count)
        self.memories.pop(0)

class HierarchicalMemory:
    def __init__(self):
        self.working_memory = MemoryLayer(capacity=5)
        self.short_term = MemoryLayer(capacity=50)
        self.long_term = MemoryLayer(capacity=1000)

    def store(self, content: Any, importance: float):
        entry = MemoryEntry(content, importance)

        if importance > 0.8:
            self.working_memory.add(entry)
        elif importance > 0.5:
            self.short_term.add(entry)
        else:
            self.long_term.add(entry)

2.2 內(nèi)存檢索和索引

from typing import List, Tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

class MemoryIndex:
    def __init__(self, embedding_model):
        self.embedding_model = embedding_model
        self.embeddings = []
        self.memories = []

    def add(self, memory: MemoryEntry):
        embedding = self.embedding_model.embed(memory.content)
        self.embeddings.append(embedding)
        self.memories.append(memory)

    def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]:
        query_embedding = self.embedding_model.embed(query)
        similarities = cosine_similarity(
            [query_embedding], 
            self.embeddings
        )[0]

        top_k_indices = np.argsort(similarities)[-k:]

        return [
            (self.memories[i], similarities[i]) 
            for i in top_k_indices
        ]

3. 可觀察的推理鏈

3.1 鏈結(jié)構(gòu)

from typing import List, Optional
from dataclasses import dataclass
import uuid

@dataclass
class ThoughtNode:
    content: str
    confidence: float
    supporting_evidence: List[str]

class ReasoningChain:
    def __init__(self):
        self.chain_id = str(uuid.uuid4())
        self.nodes: List[ThoughtNode] = []
        self.metadata = {}

    def add_thought(self, thought: ThoughtNode):
        self.nodes.append(thought)

    def get_path(self) -> List[str]:
        return [node.content for node in self.nodes]

    def get_confidence(self) -> float:
        if not self.nodes:
            return 0.0
        return sum(n.confidence for n in self.nodes) / len(self.nodes)

3.2 鏈條監(jiān)測與分析

import logging
from opentelemetry import trace
from prometheus_client import Histogram

reasoning_time = Histogram(
    'reasoning_chain_duration_seconds',
    'Time spent in reasoning chain'
)

class ChainMonitor:
    def __init__(self):
        self.tracer = trace.get_tracer(__name__)

    def monitor_chain(self, chain: ReasoningChain):
        with self.tracer.start_as_current_span("reasoning_chain") as span:
            span.set_attribute("chain_id", chain.chain_id)

            with reasoning_time.time():
                for node in chain.nodes:
                    with self.tracer.start_span("thought") as thought_span:
                        thought_span.set_attribute(
                            "confidence", 
                            node.confidence
                        )
                        logging.info(
                            f"Thought: {node.content} "
                            f"(confidence: {node.confidence})"
                        )

4. 組件解耦和復(fù)用

4.1 界面設(shè)計(jì)

from abc import ABC, abstractmethod
from typing import Generic, TypeVar

T = TypeVar('T')

class Component(ABC, Generic[T]):
    @abstractmethod
    def process(self, input_data: T) -> T:
        pass

class Pipeline:
    def __init__(self):
        self.components: List[Component] = []

    def add_component(self, component: Component):
        self.components.append(component)

    def process(self, input_data: Any) -> Any:
        result = input_data
        for component in self.components:
            result = component.process(result)
        return result

4.2 組件注冊

class ComponentRegistry:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
            cls._instance.components = {}
        return cls._instance

    def register(self, name: str, component: Component):
        self.components[name] = component

    def get(self, name: str) -> Optional[Component]:
        return self.components.get(name)

    def create_pipeline(self, component_names: List[str]) -> Pipeline:
        pipeline = Pipeline()
        for name in component_names:
            component = self.get(name)
            if component:
                pipeline.add_component(component)
        return pipeline

5. 性能監(jiān)控和優(yōu)化

5.1 性能指標(biāo)

from dataclasses import dataclass
from typing import Dict
import time

@dataclass
class PerformanceMetrics:
    latency: float
    memory_usage: float
    token_count: int
    success_rate: float

class PerformanceMonitor:
    def __init__(self):
        self.metrics: Dict[str, List[PerformanceMetrics]] = {}

    def record_operation(
        self,
        operation_name: str,
        metrics: PerformanceMetrics
    ):
        if operation_name not in self.metrics:
            self.metrics[operation_name] = []
        self.metrics[operation_name].append(metrics)

    def get_average_metrics(
        self,
        operation_name: str
    ) -> Optional[PerformanceMetrics]:
        if operation_name not in self.metrics:
            return None

        metrics_list = self.metrics[operation_name]
        return PerformanceMetrics(
            latency=sum(m.latency for m in metrics_list) / len(metrics_list),
            memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),
            token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),
            success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list)
        )

5.2 優(yōu)化策略

class PerformanceOptimizer:
    def __init__(self, monitor: PerformanceMonitor):
        self.monitor = monitor
        self.thresholds = {
            'latency': 1.0,  # seconds
            'memory_usage': 512,  # MB
            'token_count': 1000,
            'success_rate': 0.95
        }

    def analyze_performance(self, operation_name: str) -> List[str]:
        metrics = self.monitor.get_average_metrics(operation_name)
        if not metrics:
            return []

        recommendations = []

        if metrics.latency > self.thresholds['latency']:
            recommendations.append(
                "Consider implementing caching or parallel processing"
            )

        if metrics.memory_usage > self.thresholds['memory_usage']:
            recommendations.append(
                "Optimize memory usage through batch processing"
            )

        if metrics.token_count > self.thresholds['token_count']:
            recommendations.append(
                "Implement prompt optimization to reduce token usage"
            )

        if metrics.success_rate < self.thresholds['success_rate']:
            recommendations.append(
                "Review error handling and implement retry mechanisms"
            )

        return recommendations

結(jié)論

構(gòu)建企業(yè)級Agent系統(tǒng)需要仔細(xì)注意:

  • 結(jié)構(gòu)化提示管理和版本控制
  • 高效且可擴(kuò)展的內(nèi)存系統(tǒng)
  • 可觀察、可追溯的推理過程
  • 模塊化和可重用的組件設(shè)計(jì)
  • 全面的性能監(jiān)控和優(yōu)化

以上是構(gòu)建企業(yè)代理系統(tǒng):核心組件設(shè)計(jì)與優(yōu)化的詳細(xì)內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻(xiàn),版權(quán)歸原作者所有,本站不承擔(dān)相應(yīng)法律責(zé)任。如您發(fā)現(xiàn)有涉嫌抄襲侵權(quán)的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動(dòng)的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機(jī)

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強(qiáng)大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實(shí)現(xiàn)”,允許統(tǒng)一處理不同類型的對象。1.多態(tài)通過方法重寫實(shí)現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實(shí)現(xiàn)。2.多態(tài)的實(shí)際用途包括簡化代碼結(jié)構(gòu)、增強(qiáng)可擴(kuò)展性,例如圖形繪制程序中統(tǒng)一調(diào)用draw()方法,或游戲開發(fā)中處理不同角色的共同行為。3.Python實(shí)現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對象實(shí)現(xiàn)相同方法即可,這稱為“鴨子類型”。4.注意事項(xiàng)包括保持方

Python函數(shù)參數(shù)和參數(shù) Python函數(shù)參數(shù)和參數(shù) Jul 04, 2025 am 03:26 AM

參數(shù)(parameters)是定義函數(shù)時(shí)的占位符,而傳參(arguments)是調(diào)用時(shí)傳入的具體值。1.位置參數(shù)需按順序傳遞,順序錯(cuò)誤會(huì)導(dǎo)致結(jié)果錯(cuò)誤;2.關(guān)鍵字參數(shù)通過參數(shù)名指定,可改變順序且提高可讀性;3.默認(rèn)參數(shù)值在定義時(shí)賦值,避免重復(fù)代碼,但應(yīng)避免使用可變對象作為默認(rèn)值;4.args和*kwargs可處理不定數(shù)量的參數(shù),適用于通用接口或裝飾器,但應(yīng)謹(jǐn)慎使用以保持可讀性。

解釋Python發(fā)電機(jī)和迭代器。 解釋Python發(fā)電機(jī)和迭代器。 Jul 05, 2025 am 02:55 AM

迭代器是實(shí)現(xiàn)__iter__()和__next__()方法的對象,生成器是簡化版的迭代器,通過yield關(guān)鍵字自動(dòng)實(shí)現(xiàn)這些方法。1.迭代器每次調(diào)用next()返回一個(gè)元素,無更多元素時(shí)拋出StopIteration異常。2.生成器通過函數(shù)定義,使用yield按需生成數(shù)據(jù),節(jié)省內(nèi)存且支持無限序列。3.處理已有集合時(shí)用迭代器,動(dòng)態(tài)生成大數(shù)據(jù)或需惰性求值時(shí)用生成器,如讀取大文件時(shí)逐行加載。注意:列表等可迭代對象不是迭代器,迭代器到盡頭后需重新創(chuàng)建,生成器只能遍歷一次。

python`@classmethod'裝飾師解釋了 python`@classmethod'裝飾師解釋了 Jul 04, 2025 am 03:26 AM

類方法是Python中通過@classmethod裝飾器定義的方法,其第一個(gè)參數(shù)為類本身(cls),用于訪問或修改類狀態(tài)。它可通過類或?qū)嵗{(diào)用,影響的是整個(gè)類而非特定實(shí)例;例如在Person類中,show_count()方法統(tǒng)計(jì)創(chuàng)建的對象數(shù)量;定義類方法時(shí)需使用@classmethod裝飾器并將首參命名為cls,如change_var(new_value)方法可修改類變量;類方法與實(shí)例方法(self參數(shù))、靜態(tài)方法(無自動(dòng)參數(shù))不同,適用于工廠方法、替代構(gòu)造函數(shù)及管理類變量等場景;常見用途包括從

如何處理Python中的API身份驗(yàn)證 如何處理Python中的API身份驗(yàn)證 Jul 13, 2025 am 02:22 AM

處理API認(rèn)證的關(guān)鍵在于理解并正確使用認(rèn)證方式。1.APIKey是最簡單的認(rèn)證方式,通常放在請求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進(jìn)行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過client_id和client_secret獲取Token,再在請求頭中帶上BearerToken;4.為應(yīng)對Token過期,可封裝Token管理類自動(dòng)刷新Token;總之,根據(jù)文檔選擇合適方式,并安全存儲(chǔ)密鑰信息是關(guān)鍵。

什么是python魔法方法或dunder方法? 什么是python魔法方法或dunder方法? Jul 04, 2025 am 03:20 AM

Python的magicmethods(或稱dunder方法)是用于定義對象行為的特殊方法,它們以雙下劃線開頭和結(jié)尾。1.它們使對象能夠響應(yīng)內(nèi)置操作,如加法、比較、字符串表示等;2.常見用例包括對象初始化與表示(__init__、__repr__、__str__)、算術(shù)運(yùn)算(__add__、__sub__、__mul__)及比較運(yùn)算(__eq__、__lt__);3.使用時(shí)應(yīng)確保其行為符合預(yù)期,例如__repr__應(yīng)返回可重構(gòu)對象的表達(dá)式,算術(shù)方法應(yīng)返回新實(shí)例;4.應(yīng)避免過度使用或以令人困惑的方

Python內(nèi)存管理如何工作? Python內(nèi)存管理如何工作? Jul 04, 2025 am 03:26 AM

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

描述Python中的Python垃圾收集。 描述Python中的Python垃圾收集。 Jul 03, 2025 am 02:07 AM

Python的垃圾回收機(jī)制通過引用計(jì)數(shù)和周期性垃圾收集來自動(dòng)管理內(nèi)存。其核心方法是引用計(jì)數(shù),當(dāng)對象的引用數(shù)為零時(shí)立即釋放內(nèi)存;但無法處理循環(huán)引用,因此引入了垃圾收集模塊(gc)來檢測并清理循環(huán)。垃圾回收通常在程序運(yùn)行中引用計(jì)數(shù)減少、分配與釋放差值超過閾值或手動(dòng)調(diào)用gc.collect()時(shí)觸發(fā)。用戶可通過gc.disable()關(guān)閉自動(dòng)回收、gc.collect()手動(dòng)執(zhí)行、gc.set_threshold()調(diào)整閾值以實(shí)現(xiàn)控制。并非所有對象都參與循環(huán)回收,如不包含引用的對象由引用計(jì)數(shù)處理,內(nèi)置

See all articles