使用Python獲取股票數(shù)據(jù)的最佳方法是什麼?
Aug 26, 2023 pm 01:41 PM在本文中,我們將學習使用 Python 取得股票資料的最佳方法。
yfinance Python 庫將用於從雅虎財經(jīng)檢索當前和歷史股票市場價格資料。
安裝雅虎財經(jīng)(yfinance)
取得股票市場數(shù)據(jù)的最佳平臺之一是雅虎財經(jīng)。只需從雅虎財經(jīng)網(wǎng)站下載資料集並使用 yfinance 庫和 Python 編程即可存取它。
您可以在 pip 的幫助下安裝 yfinance,您所要做的就是打開命令提示字元並鍵入以下命令顯示語法:
文法
pip install yfinance
yfinance 函式庫最好的部分是,它可以免費使用,而且不需要 API 金鑰
如何取得目前股票價格資料
我們需要找到可用於資料擷取的股票代碼。我們將展示 以下範例中 GOOGL 的當前市場價格和先前收盤價。
範例
以下程式回傳市場價格值、前收盤價值、股票代碼 使用 yfinance 模組的值 -
import yfinance as yf ticker = yf.Ticker('GOOGL').info marketPrice = ticker['regularMarketPrice'] previousClosePrice = ticker['regularMarketPreviousClose'] print('Ticker Value: GOOGL') print('Market Price Value:', marketPrice) print('Previous Close Price Value:', previousClosePrice)
輸出
執(zhí)行時,上述程式將產(chǎn)生以下輸出 -
Ticker Value: GOOGL Market Price Value: 92.83 Previous Close Price Value: 93.71
如何取得股票價格的歷史資料
透過給出開始日期、結(jié)束日期和程式碼,我們可以獲得完整的歷史價格資料。
範例
以下程式傳回開始日期和結(jié)束日期之間的股票價格資料 -
# importing the yfinance package import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # printing the last 5 rows of the data print(resultData.tail())
輸出
執(zhí)行時,上述程式將產(chǎn)生以下輸出 -
[*********************100%***********************] 1 of 1 completed Open High Low Close Adj Close Volume Date 2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000 2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000 2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000 2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000 2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
上面的範例將檢索2015-03-01到2017-03-01的股票價格資料。
如果您想同時從多個程式碼中提取數(shù)據(jù),請以空格分隔的字串形式提供代碼。
轉(zhuǎn)換資料進行分析
Date 是資料集的索引,而不是上面範例中資料集的欄位。在對其執(zhí)行任何資料分析之前,必須將此索引轉(zhuǎn)換為列。以下是如何做到這一點 -
範例
以下程式將列名稱新增至開始日期和結(jié)束日期之間的股票資料 -
import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # Setting date as index resultData["Date"] = resultData.index # Giving column names resultData = resultData[["Date", "Open", "High","Low", "Close", "Adj Close", "Volume"]] # Resetting the index values resultData.reset_index(drop=True, inplace=True) # getting the first 5 rows of the data print(resultData.head())
輸出
執(zhí)行時,上述程式將產(chǎn)生以下輸出 -
[*********************100%***********************] 1 of 1 completed Date Open High Low Close Adj Close Volume 0 2015-03-02 28.350000 28.799500 28.157499 28.750999 28.750999 50406000 1 2015-03-03 28.817499 29.042500 28.525000 28.939501 28.939501 50526000 2 2015-03-04 28.848499 29.081499 28.625999 28.916500 28.916500 37964000 3 2015-03-05 28.981001 29.160000 28.911501 29.071501 29.071501 35918000 4 2015-03-06 29.100000 29.139000 28.603001 28.645000 28.645000 37592000
以上轉(zhuǎn)換後的資料與我們從雅虎財經(jīng)取得的資料是相同的
將取得的資料儲存在CSV檔案中
to_csv()方法可用來將DataFrame物件匯出到CSV檔案。以下程式碼將幫助您匯出CSV檔案中的數(shù)據(jù),因為上面轉(zhuǎn)換的資料已經(jīng)在pandas 資料框中。
# importing yfinance module with an alias name import yfinance as yf # giving the start and end dates startDate = '2015-03-01' endDate = '2017-03-01' # setting the ticker value ticker = 'GOOGL' # downloading the data of the ticker value between # the start and end dates resultData = yf.download(ticker, startDate, endDate) # printing the last 5 rows of the data print(resultData.tail()) # exporting/converting the above data to a CSV file resultData.to_csv("outputGOOGL.csv")
輸出
執(zhí)行時,上述程式將產(chǎn)生以下輸出 -
[*********************100%***********************] 1 of 1 completed Open High Low Close Adj Close Volume Date 2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000 2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000 2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000 2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000 2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
可視化資料
yfinance Python 模組是最容易設(shè)定、收集資料和執(zhí)行資料分析活動的模組之一。使用 Matplotlib、Seaborn 或 Bokeh 等軟體包,您可以視覺化結(jié)果並捕獲見解。
您甚至可以使用 PyScript 直接在網(wǎng)頁上顯示這些視覺化效果。
結(jié)論
在本文中,我們學習如何使用Python yfinance模組來取得最佳股票資料。此外,我們還學習如何取得指定時間段內(nèi)的所有股票數(shù)據(jù),如何透過新增自訂索引和列進行數(shù)據(jù)分析,以及如何將這些數(shù)據(jù)轉(zhuǎn)換為 CSV 檔案。
以上是使用Python獲取股票數(shù)據(jù)的最佳方法是什麼?的詳細內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

熱AI工具

Undress AI Tool
免費脫衣圖片

Undresser.AI Undress
人工智慧驅(qū)動的應用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6
視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

用戶語音輸入通過前端JavaScript的MediaRecorderAPI捕獲並發(fā)送至PHP後端;2.PHP將音頻保存為臨時文件後調(diào)用STTAPI(如Google或百度語音識別)轉(zhuǎn)換為文本;3.PHP將文本發(fā)送至AI服務(如OpenAIGPT)獲取智能回復;4.PHP再調(diào)用TTSAPI(如百度或Google語音合成)將回復轉(zhuǎn)為語音文件;5.PHP將語音文件流式返回前端播放,完成交互。整個流程由PHP主導數(shù)據(jù)流轉(zhuǎn)與錯誤處理,確保各環(huán)節(jié)無縫銜接。

要實現(xiàn)PHP結(jié)合AI進行文本糾錯與語法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開源NLP庫;2.通過PHP的curl或Guzzle調(diào)用API並處理返回結(jié)果;3.在應用中展示糾錯信息並允許用戶選擇是否採納;4.使用php-l和PHP_CodeSniffer進行語法檢測與代碼優(yōu)化;5.持續(xù)收集反饋並更新模型或規(guī)則以提升效果。選擇AIAPI時應重點評估準確率、響應速度、價格及對PHP的支持。代碼優(yōu)化應遵循PSR規(guī)範、合理使用緩存、避免循環(huán)查詢、定期審查代碼,並藉助X

使用Seaborn的jointplot可快速可視化兩個變量間的關(guān)係及各自分佈;2.基礎(chǔ)散點圖通過sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實現(xiàn),中心為散點圖,上下和右側(cè)顯示直方圖;3.添加回歸線和密度信息可用kind="reg",並結(jié)合marginal_kws設(shè)置邊緣圖樣式;4.數(shù)據(jù)量大時推薦kind="hex",用

PHP結(jié)合AI做視頻內(nèi)容分析的核心思路是讓PHP作為后端“膠水”,先上傳視頻到云存儲,再調(diào)用AI服務(如GoogleCloudVideoAI等)進行異步分析;2.PHP解析返回的JSON結(jié)果,提取人物、物體、場景、語音等信息生成智能標簽并存入數(shù)據(jù)庫;3.優(yōu)勢在于利用PHP成熟的Web生態(tài)快速集成AI能力,適合已有PHP系統(tǒng)的項目高效落地;4.常見挑戰(zhàn)包括大文件處理(用預簽名URL直傳云存儲)、異步任務(引入消息隊列)、成本控制(按需分析 預算監(jiān)控)和結(jié)果優(yōu)化(標簽規(guī)范化);5.智能標簽顯著提升視

PHP開發(fā)AI文本摘要的核心是作為協(xié)調(diào)器調(diào)用外部AI服務API(如OpenAI、HuggingFace),實現(xiàn)文本預處理、API請求、響應解析與結(jié)果展示;2.局限性在於計算性能弱、AI生態(tài)薄弱,應對策略為藉力API、服務解耦和異步處理;3.模型選擇需權(quán)衡摘要質(zhì)量、成本、延遲、並發(fā)、數(shù)據(jù)隱私,推薦使用GPT或BART/T5等抽象式模型;4.性能優(yōu)化包括緩存、異步隊列、批量處理和就近區(qū)域選擇,錯誤處理需覆蓋限流重試、網(wǎng)絡超時、密鑰安全、輸入驗證及日誌記錄,以確保系統(tǒng)穩(wěn)定高效運行。

要將AI情感計算技術(shù)融入PHP應用,核心是利用雲(yún)服務AIAPI(如Google、AWS、Azure)進行情感分析,通過HTTP請求發(fā)送文本並解析返回的JSON結(jié)果,將情感數(shù)據(jù)存入數(shù)據(jù)庫,從而實現(xiàn)用戶反饋的自動化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準確性、成本、語言支持和集成複雜度;2.使用Guzzle或curl發(fā)送請求,存儲情感分數(shù)、標籤及強度等信息;3.構(gòu)建可視化儀錶盤,支持優(yōu)先級排序、趨勢分析、產(chǎn)品迭代方向和用戶細分;4.應對技術(shù)挑戰(zhàn),如API調(diào)用限制、數(shù)

字符串列表可用join()方法合併,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉(zhuǎn)為字符串後才能join;3.任意類型列表可直接用str()轉(zhuǎn)換為帶括號和引號的字符串,適用於調(diào)試;4.自定義格式可用生成器表達式結(jié)合join()實現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[

pythoncanbeoptimizedFormized-formemory-boundoperationsbyreducingOverHeadThroughGenerator,有效dattratsures,andManagingObjectLifetimes.first,useGeneratorSInsteadoFlistSteadoflistSteadoFocessLargedAtasetSoneItematatime,desceedingingLoadeGingloadInterveringerverneDraineNterveingerverneDraineNterveInterveIntMory.second.second.second.second,Choos,Choos
