不知道大家對(duì)DES有沒有興趣,今天在整理的時(shí)候,看到我在一年半前翻譯的一篇文章。
Jun 21, 2016 am 09:12 AM如何實(shí)現(xiàn) DES 算法(全)。
這是摘自清華BBS的一篇文章,洋文的,小弟把它翻成中文請(qǐng)各位高手指點(diǎn)。
分號(hào)(;)后的話是小弟的翻譯,井號(hào)(#)后的是小弟的一點(diǎn)感想。
??????????????????????????How to implement the
?????????????????????Data Encryption Standard (DES)
????????????????????????A step by step tutorial
??????????????????????????????Version 1.2
The Data Encryption Standard (DES) algorithm, adopted by the U.S.??
government in 1977, is a block cipher that transforms 64-bit data blocks??
under a 56-bit secret key, by means of permutation and substitution. It??
is officially described in FIPS PUB 46. The DES algorithm is used for??
many applications within the government and in the private sector.
This is a tutorial designed to be clear and compact, and to provide a
newcomer to the DES with all the necessary information to implement it
himself, without having to track down printed works or wade through C??
source code. I welcome any comments.
Matthew Fischer
;上面是介紹,我就不翻了。 ;)
Here's how to do it, step by step:
1??Process the key.
;生成密鑰
1.1??Get a 64-bit key from the user. (Every 8th bit is considered a??
parity bit. For a key to have correct parity, each byte should contain??
an odd number of "1" bits.)
;從用戶處得到一個(gè)64位的密鑰。(每8位一組,每組的第8位是校驗(yàn)位。如果校驗(yàn)
正確,每個(gè)字節(jié)應(yīng)該有一個(gè)為1的
1.2??Calculate the key schedule.
;計(jì)算密鑰表
1.2.1??Perform the following permutation on the 64-bit key. (The parity??
bits are discarded, reducing the key to 56 bits. Bit 1 of the permuted??
block is bit 57 of the original key, bit 2 is bit 49, and so on with bit??
56 being bit 4 of the original key.)
;對(duì)64位的密鑰進(jìn)行如下的置換。(去掉校驗(yàn)位,密鑰的實(shí)際長(zhǎng)度是56位。置換后的
;第一位是原密鑰的第57位,第二位是原第49位,第五十六位就是原來密鑰的第4位。)
# 古怪的置換,哪位大哥能寫出算式?
# 好象是分成兩部
#???????for(j=57;j#???????{
#???????????????for(i=j;i#???????????????{
#???????????????????????if(k=28)
#???????????????????????????????break;
#???????????????????????c[k]=i;
#???????????????????????k++;
#???????????????}
# 這是前28位,不知道對(duì)不對(duì)?請(qǐng)指正。
????????????????????????Permuted Choice 1 (PC-1)
??????????????????????????57 49 41 33 25 17??9
???????????????????????????1 58 50 42 34 26 18
??????????????????????????10??2 59 51 43 35 27
??????????????????????????19 11??3 60 52 44 36
??????????????????????????63 55 47 39 31 23 15
???????????????????????????7 62 54 46 38 30 22
??????????????????????????14??6 61 53 45 37 29
??????????????????????????21 13??5 28 20 12??4
1.2.2??Split the permuted key into two halves. The first 28 bits are??
called C[0] and the last 28 bits are called D[0].
;把置換后的密鑰分為C[0] 和D[0]兩部分,各28位。
1.2.3??Calculate the 16 subkeys. Start with i = 1.
;計(jì)算16個(gè)子密鑰,從i=1開始。
1.2.3.1??Perform one or two circular left shifts on both C[i-1] and??
D[i-1] to get C[i] and D[i], respectively. The number of shifts per??
iteration are given in the table below.
;分別對(duì)C[i-1]和D[i-1]進(jìn)行左移一到兩位的位移操作,得到C[i]和D[i]。每次
;位移數(shù)目如下:
# 共16次
????Iteration #???1??2??3??4??5??6??7??8??9 10 11 12 13 14 15 16
????Left Shifts???1??1??2??2??2??2??2??2??1??2??2??2??2??2??2??1
1.2.3.2??Permute the concatenation C[i]D[i] as indicated below. This??
will yield K[i], which is 48 bits long.
;如下表,改變C[i]和D[i]的排列,得到48位長(zhǎng)的k[i]。
# 不懂 :(
# 是不是丟掉了某些位?
????????????????????????Permuted Choice 2 (PC-2)
???????????????????????????14 17 11 24??1??5
????????????????????????????3 28 15??6 21 10
???????????????????????????23 19 12??4 26??8
???????????????????????????16??7 27 20 13??2
???????????????????????????41 52 31 37 47 55
???????????????????????????30 40 51 45 33 48
???????????????????????????44 49 39 56 34 53
???????????????????????????46 42 50 36 29 32
1.2.3.3??Loop back to 1.2.3.1 until K[16] has been calculated.
;重復(fù) 1.2.3.1 開始的過程,算出16個(gè)字密鑰。
2??Process a 64-bit data block.
;處理一個(gè)64位的數(shù)據(jù)塊。
2.1??Get a 64-bit data block. If the block is shorter than 64 bits, it??
should be padded as appropriate for the application.
;獲取一個(gè)64位的數(shù)據(jù)塊。如果數(shù)據(jù)塊不到64位,就補(bǔ)足64位。
# 可能是用0補(bǔ)吧。
2.2??Perform the following permutation on the data block.
;對(duì)數(shù)據(jù)塊進(jìn)行如下置換。
# 又是分成兩部分進(jìn)行,先是偶數(shù)位。
# 比較簡(jiǎn)單,算式就不寫了。
????????????????????????Initial Permutation (IP)
????????????????????????58 50 42 34 26 18 10??2
????????????????????????60 52 44 36 28 20 12??4
????????????????????????62 54 46 38 30 22 14??6
????????????????????????64 56 48 40 32 24 16??8
????????????????????????57 49 41 33 25 17??9??1
????????????????????????59 51 43 35 27 19 11??3
????????????????????????61 53 45 37 29 21 13??5
????????????????????????63 55 47 39 31 23 15??7
2.3??Split the block into two halves. The first 32 bits are called L[0],??
and the last 32 bits are called R[0].
;將數(shù)據(jù)塊平分為L(zhǎng)[0]和R[0]兩部分。
2.4??Apply the 16 subkeys to the data block. Start with i = 1.
;從i=1開始,用16個(gè)子密鑰對(duì)數(shù)據(jù)塊進(jìn)行加密。
2.4.1??Expand the 32-bit R[i-1] into 48 bits according to the??
bit-selection function below.
;將數(shù)據(jù)塊的后32位R[i-1]以下面規(guī)則進(jìn)行擴(kuò)展。
# 不會(huì)寫算式。:(
?????????????????????????????Expansion (E)
???????????????????????????32??1??2??3??4??5
????????????????????????????4??5??6??7??8??9
????????????????????????????8??9 10 11 12 13
???????????????????????????12 13 14 15 16 17
???????????????????????????16 17 18 19 20 21
???????????????????????????20 21 22 23 24 25
???????????????????????????24 25 26 27 28 29
???????????????????????????28 29 30 31 32??1
2.4.2??Exclusive-or E(R[i-1]) with K[i].
;用K[i]對(duì)E(R[i-1])進(jìn)行異或操作。
2.4.3??Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are??
B[1], bits 7-12 are B[2], and so on with bits 43-48 being B[8].
;將上一步的操作結(jié)果分成8塊,每塊6位,命名為B[1]到B[8]。
2.4.4??Substitute the values found in the S-boxes for all B[j]. Start??
with j = 1. All values in the S-boxes should be considered 4 bits wide.
;把所有的B[j]在S框中進(jìn)行置換,S框中所有的值的寬(長(zhǎng))度應(yīng)是4位。
# 不懂?。。?:(
2.4.4.1??Take the 1st and 6th bits of B[j] together as a 2-bit value???
(call it m) indicating the row in S[j] to look in for the substitution.
;把B[j]中的第一位和第六位命名為m,表示S[j]在置換時(shí)的行。
2.4.4.2??Take the 2nd through 5th bits of B[j] together as a 4-bit
value (call it n) indicating the column in S[j] to find the substitution.
;把B[j]二到五位命名為n,表示S[j]在置換時(shí)的列。
2.4.4.3??Replace B[j] with S[j][m][n].
;用S[j][m][n]置換B[j]。
???????????????????????Substitution Box 1 (S[1])
????????????14??4 13??1??2 15 11??8??3 10??6 12??5??9??0??7
?????????????0 15??7??4 14??2 13??1 10??6 12 11??9??5??3??8
?????????????4??1 14??8 13??6??2 11 15 12??9??7??3 10??5??0
????????????15 12??8??2??4??9??1??7??5 11??3 14 10??0??6 13
??????????????????????????????????S[2]
????????????15??1??8 14??6 11??3??4??9??7??2 13 12??0??5 10
?????????????3 13??4??7 15??2??8 14 12??0??1 10??6??9 11??5
?????????????0 14??7 11 10??4 13??1??5??8 12??6??9??3??2 15
????????????13??8 10??1??3 15??4??2 11??6??7 12??0??5 14??9
??????????????????????????????????S[3]
????????????10??0??9 14??6??3 15??5??1 13 12??7 11??4??2??8
????????????13??7??0??9??3??4??6 10??2??8??5 14 12 11 15??1
????????????13??6??4??9??8 15??3??0 11??1??2 12??5 10 14??7
?????????????1 10 13??0??6??9??8??7??4 15 14??3 11??5??2 12
??????????????????????????????????S[4]
?????????????7 13 14??3??0??6??9 10??1??2??8??5 11 12??4 15
????????????13??8 11??5??6 15??0??3??4??7??2 12??1 10 14??9
????????????10??6??9??0 12 11??7 13 15??1??3 14??5??2??8??4
?????????????3 15??0??6 10??1 13??8??9??4??5 11 12??7??2 14
??????????????????????????????????S[5]
?????????????2 12??4??1??7 10 11??6??8??5??3 15 13??0 14??9
????????????14 11??2 12??4??7 13??1??5??0 15 10??3??9??8??6
?????????????4??2??1 11 10 13??7??8 15??9 12??5??6??3??0 14
????????????11??8 12??7??1 14??2 13??6 15??0??9 10??4??5??3
??????????????????????????????????S[6]
????????????12??1 10 15??9??2??6??8??0 13??3??4 14??7??5 11
????????????10 15??4??2??7 12??9??5??6??1 13 14??0 11??3??8
?????????????9 14 15??5??2??8 12??3??7??0??4 10??1 13 11??6
?????????????4??3??2 12??9??5 15 10 11 14??1??7??6??0??8 13
??????????????????????????????????S[7]
?????????????4 11??2 14 15??0??8 13??3 12??9??7??5 10??6??1
????????????13??0 11??7??4??9??1 10 14??3??5 12??2 15??8??6
?????????????1??4 11 13 12??3??7 14 10 15??6??8??0??5??9??2
?????????????6 11 13??8??1??4 10??7??9??5??0 15 14??2??3 12
??????????????????????????????????S[8]
????????????13??2??8??4??6 15 11??1 10??9??3 14??5??0 12??7
?????????????1 15 13??8 10??3??7??4 12??5??6 11??0 14??9??2
?????????????7 11??4??1??9 12 14??2??0??6 10 13 15??3??5??8
?????????????2??1 14??7??4 10??8 13 15 12??9??0??3??5??6 11
2.4.4.4??Loop back to 2.4.4.1 until all 8 blocks have been replaced.
;重復(fù)2.4.4.1開始的步驟,直至8個(gè)數(shù)據(jù)塊都被置換。
2.4.5??Permute the concatenation of B[1] through B[8] as indicated below.
;以下面的方法改變B[1]到B[8]的順序 。
?????????????????????????????Permutation P
??????????????????????????????16??7 20 21
??????????????????????????????29 12 28 17
???????????????????????????????1 15 23 26
???????????????????????????????5 18 31 10
???????????????????????????????2??8 24 14
??????????????????????????????32 27??3??9
??????????????????????????????19 13 30??6
??????????????????????????????22 11??4 25
2.4.6??Exclusive-or the resulting value with L[i-1]. Thus, all together,??
your R[i] = L[i-1] xor P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit???
block of E(R[i-1]) xor K[i]. (The function for R[i] is written as, R[i] =??
L[i-1] xor f(R[i-1], K[i]).)
;用L[i-1]對(duì)上一步的結(jié)果進(jìn)行異或操作。如此就有以下結(jié)果:R[i] = L[i-1] xor ;
P(S[1](B[1])...S[8](B[8]))。這里,B[j]是六位的數(shù)據(jù)塊,它是E(R[i-1]) xor
;K[i]的結(jié)果。(R[i]的函數(shù)可以寫成R[i] = L[i-1] xor f(R[i-1], K[i])。)
2.4.7??L[i] = R[i-1].
;L[i] = R[i-1].
2.4.8??Loop back to 2.4.1 until K[16] has been applied.
;重復(fù)2.4.1開始的步驟,直至所有的子密鑰都被使用過。
# 就是再重復(fù)15次,每次使用不同的子密鑰。
2.5??Perform the following permutation on the block R[16]L[16].
;對(duì)R[16]L[16]進(jìn)行如下的置換。
???????????????????????Final Permutation (IP**-1)
????????????????????????40??8 48 16 56 24 64 32
????????????????????????39??7 47 15 55 23 63 31
????????????????????????38??6 46 14 54 22 62 30
????????????????????????37??5 45 13 53 21 61 29
????????????????????????36??4 44 12 52 20 60 28
????????????????????????35??3 43 11 51 19 59 27
????????????????????????34??2 42 10 50 18 58 26
????????????????????????33??1 41??9 49 17 57 25
This has been a description of how to use the DES algorithm to encrypt??
one 64-bit block. To decrypt, use the same process, but just use the keys??
K[i] in reverse order. That is, instead of applying K[1] for the first??
iteration, apply K[16], and then K[15] for the second, on down to K[1].
;以上就是怎樣用DES算法對(duì)一個(gè)64位的數(shù)據(jù)塊進(jìn)行加密的過程。至于解密,只需要
;在以上過程中把子密鑰的順序倒過來用就可以了。也就是說,在加密時(shí)用子密鑰
;K[1],在解密過程中就用K[16];在加密時(shí)用子密鑰K[2],在解密過程中就用K[12]。
Summaries:
;摘要
# 以下是生成子密鑰,加密和解密的公式化敘述。
Key schedule:
??C[0]D[0] = PC1(key)
??for 1 ???C[i] = LS[i](C[i-1])
???D[i] = LS[i](D[i-1])
???K[i] = PC2(C[i]D[i])
Encipherment:
??L[0]R[0] = IP(plain block)
??for 1 ???L[i] = R[i-1]
???R[i] = L[i-1] xor f(R[i-1], K[i])
??cipher block = FP(R[16]L[16])
Decipherment:
??R[16]L[16] = IP(cipher block)
??for 1 ???R[i-1] = L[i]
???L[i-1] = R[i] xor f(L[i], K[i])
??plain block = FP(L[0]R[0])
To encrypt or decrypt more than 64 bits there are four official modes??
(defined in FIPS PUB 81). One is to go through the above-described??
process for each block in succession. This is called Electronic Codebook??
(ECB) mode. A stronger method is to exclusive-or each plaintext block??
with the preceding ciphertext block prior to encryption. (The first??
block is exclusive-or'ed with a secret 64-bit initialization vector??
(IV).) This is called Cipher Block Chaining (CBC) mode. The other two??
modes are Output Feedback (OFB) and Cipher Feedback (CFB).
;對(duì)超過64位的加密和解密,(美國(guó))聯(lián)邦信息處理標(biāo)準(zhǔn) PUB 81 中定有四種方法。
;一種是連續(xù)的對(duì)每個(gè)數(shù)據(jù)塊進(jìn)行上述操作。這種方法被稱 ECB mode。另一種更
;高強(qiáng)度的方法是在加密前,用前述的密文塊對(duì)明文塊進(jìn)行異或操作。
# 括號(hào)里那句話不懂 :(
;這種方法被稱為 CBC mode。還有兩種方法是 OFB mode 和 CFB mode。
When it comes to padding the data block, there are several options. One??
is to simply append zeros. Two suggested by FIPS PUB 81 are, if the data??
is binary data, fill up the block with bits that are the opposite of the??
last bit of data, or, if the data is ASCII data, fill up the block with??
random bytes and put the ASCII character for the number of pad bytes in??
the last byte of the block. Another technique is to pad the block with??
random bytes and in the last 3 bits store the original number of data bytes.
;在填充數(shù)據(jù)塊時(shí)(還記不記得,當(dāng)數(shù)據(jù)塊不足64位時(shí)要進(jìn)行填充),有以下幾種
;選擇:一種就是填0。第二種是被(美國(guó))聯(lián)邦信息處理標(biāo)準(zhǔn) PUB 81所建議的,如
;果數(shù)據(jù)是二進(jìn)制的,就填入和數(shù)據(jù)位最后一位相反的數(shù);如果數(shù)據(jù)塊是ASCII碼,
;就填入隨機(jī)字節(jié),并且將填充數(shù)目寫入最后一個(gè)字節(jié)。另一種技術(shù)就是填入隨機(jī)
;字節(jié),并且將最后原數(shù)據(jù)字節(jié)數(shù)寫入最后的三位。(注意:是位,bit)

熱AI工具

Undress AI Tool
免費(fèi)脫衣圖片

Undresser.AI Undress
人工智慧驅(qū)動(dòng)的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強(qiáng)大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6
視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版
神級(jí)程式碼編輯軟體(SublimeText3)

Windows11將清新優(yōu)雅的設(shè)計(jì)帶到了最前沿;現(xiàn)代介面可讓您個(gè)性化和更改最精細(xì)的細(xì)節(jié),例如視窗邊框。在本指南中,我們將討論逐步說明,以協(xié)助您在Windows作業(yè)系統(tǒng)中建立反映您的風(fēng)格的環(huán)境。如何更改視窗邊框設(shè)定?按+開啟“設(shè)定”應(yīng)用程式。 WindowsI前往個(gè)人化,然後按一下顏色設(shè)定。顏色變更視窗邊框設(shè)定視窗11「寬度=」643「高度=」500「>找到在標(biāo)題列和視窗邊框上顯示強(qiáng)調(diào)色選項(xiàng),然後切換它旁邊的開關(guān)。若要在「開始」功能表和工作列上顯示主題色,請(qǐng)開啟「在開始」功能表和工作列上顯示主題

「你的組織要求你更改PIN訊息」將顯示在登入畫面上。當(dāng)在使用基於組織的帳戶設(shè)定的電腦上達(dá)到PIN過期限制時(shí),就會(huì)發(fā)生這種情況,在該電腦上,他們可以控制個(gè)人設(shè)備。但是,如果您使用個(gè)人帳戶設(shè)定了Windows,則理想情況下不應(yīng)顯示錯(cuò)誤訊息。雖然情況並非總是如此。大多數(shù)遇到錯(cuò)誤的使用者使用個(gè)人帳戶報(bào)告。為什麼我的組織要求我在Windows11上更改我的PIN?可能是您的帳戶與組織相關(guān)聯(lián),您的主要方法應(yīng)該是驗(yàn)證這一點(diǎn)。聯(lián)絡(luò)網(wǎng)域管理員會(huì)有所幫助!此外,配置錯(cuò)誤的本機(jī)原則設(shè)定或不正確的登錄項(xiàng)目也可能導(dǎo)致錯(cuò)誤。即

預(yù)設(shè)情況下,Windows11上的標(biāo)題列顏色取決於您選擇的深色/淺色主題。但是,您可以將其變更為所需的任何顏色。在本指南中,我們將討論三種方法的逐步說明,以更改它並個(gè)性化您的桌面體驗(yàn),使其具有視覺吸引力。是否可以更改活動(dòng)和非活動(dòng)視窗的標(biāo)題列顏色?是的,您可以使用「設(shè)定」套用變更活動(dòng)視窗的標(biāo)題列顏色,也可以使用登錄編輯程式變更非活動(dòng)視窗的標(biāo)題列顏色。若要了解這些步驟,請(qǐng)前往下一部分。如何在Windows11中變更標(biāo)題列的顏色? 1.使用「設(shè)定」應(yīng)用程式按+開啟設(shè)定視窗。 WindowsI前往“個(gè)人化”,然

工作列縮圖可能很有趣,但它們也可能分散注意力或煩人。考慮到您將滑鼠懸停在該區(qū)域的頻率,您可能無意中關(guān)閉了重要視窗幾次。另一個(gè)缺點(diǎn)是它使用更多的系統(tǒng)資源,因此,如果您一直在尋找一種提高資源效率的方法,我們將向您展示如何停用它。不過,如果您的硬體規(guī)格可以處理它並且您喜歡預(yù)覽版,則可以啟用它。如何在Windows11中啟用工作列縮圖預(yù)覽? 1.使用「設(shè)定」應(yīng)用程式點(diǎn)擊鍵並點(diǎn)選設(shè)定。 Windows按一下系統(tǒng),然後選擇關(guān)於。點(diǎn)選高級(jí)系統(tǒng)設(shè)定。導(dǎo)航至“進(jìn)階”選項(xiàng)卡,然後選擇“效能”下的“設(shè)定”。在「視覺效果」選

您是否在Windows安裝程式頁面上看到「出現(xiàn)問題」以及「OOBELANGUAGE」語句? Windows的安裝有時(shí)會(huì)因此類錯(cuò)誤而停止。 OOBE表示開箱即用的體驗(yàn)。正如錯(cuò)誤提示所表示的那樣,這是與OOBE語言選擇相關(guān)的問題。沒有什麼好擔(dān)心的,你可以透過OOBE螢?zāi)槐旧淼钠猎]冊(cè)表編輯來解決這個(gè)問題。快速修復(fù)–1.點(diǎn)選OOBE應(yīng)用底部的「重試」按鈕。這將繼續(xù)進(jìn)行該過程,而不會(huì)再打嗝。 2.使用電源按鈕強(qiáng)制關(guān)閉系統(tǒng)。系統(tǒng)重新啟動(dòng)後,OOBE應(yīng)繼續(xù)。 3.斷開系統(tǒng)與網(wǎng)際網(wǎng)路的連接。在脫機(jī)模式下完成OOBE的所

螢?zāi)涣炼仁鞘褂矛F(xiàn)代計(jì)算設(shè)備不可或缺的一部分,尤其是當(dāng)您長(zhǎng)時(shí)間注視螢?zāi)粫r(shí)。它可以幫助您減輕眼睛疲勞,提高易讀性,並輕鬆有效地查看內(nèi)容。但是,根據(jù)您的設(shè)置,有時(shí)很難管理亮度,尤其是在具有新UI更改的Windows11上。如果您在調(diào)整亮度時(shí)遇到問題,以下是在Windows11上管理亮度的所有方法。如何在Windows11上變更亮度[10種方式解釋]單一顯示器使用者可以使用下列方法在Windows11上調(diào)整亮度。這包括使用單一顯示器的桌上型電腦系統(tǒng)以及筆記型電腦。讓我們開始吧。方法1:使用操作中心操作中心是訪問

在Windows11上的顯示縮放方面,我們都有不同的偏好。有些人喜歡大圖標(biāo),有些人喜歡小圖標(biāo)。但是,我們都同意擁有正確的縮放比例很重要。字體縮放不良或圖像過度縮放可能是工作時(shí)真正的生產(chǎn)力殺手,因此您需要知道如何自訂以充分利用系統(tǒng)功能。自訂縮放的優(yōu)點(diǎn):對(duì)於難以閱讀螢?zāi)簧系奈淖值娜藖碚f,這是一個(gè)有用的功能。它可以幫助您一次在螢?zāi)簧喜榭锤鄡?nèi)容。您可以建立僅適用於某些監(jiān)視器和應(yīng)用程式的自訂擴(kuò)充功能設(shè)定檔??梢詭椭岣叩碗A硬體的效能。它使您可以更好地控制螢?zāi)簧系膬?nèi)容。如何在Windows11

Windows上的啟動(dòng)過程有時(shí)會(huì)突然轉(zhuǎn)向顯示包含此錯(cuò)誤代碼0xc004f069的錯(cuò)誤訊息。雖然啟動(dòng)程序已經(jīng)聯(lián)機(jī),但一些運(yùn)行WindowsServer的舊系統(tǒng)可能會(huì)遇到此問題。透過這些初步檢查,如果這些檢查不能幫助您啟動(dòng)系統(tǒng),請(qǐng)?zhí)街饕鉀Q方案以解決問題。解決方法–關(guān)閉錯(cuò)誤訊息和啟動(dòng)視窗。然後,重新啟動(dòng)電腦。再次從頭開始重試Windows啟動(dòng)程序。修復(fù)1–從終端啟動(dòng)從cmd終端啟動(dòng)WindowsServerEdition系統(tǒng)。階段–1檢查Windows伺服器版本您必須檢查您使用的是哪種類型的W
