使用df.columns 可獲取Pandas DataFrame 的列名,返回一個Index 對象;2. 通過list(df.columns) 或df.columns.tolist() 可將其轉換為Python 列表;3. 可直接遍歷df.columns 輸出每個列名;此外,可使用切片或列表推導式進行篩選,如df.columns[:2] 獲取前兩列,[col for col in df.columns if col.startswith('A')] 篩選以A 開頭的列名,這些方法均基於df.columns 實現(xiàn),能夠滿足大多數(shù)獲取和處理列名的需求。
要獲取Pandas DataFrame 的列名,有幾種常用方法。下面是一個簡單明了的例子,展示如何獲取列名。

1. 使用.columns
屬性
這是最常用的方法,返回一個包含所有列名的Index 對象。
import pandas as pd # 創(chuàng)建一個示例DataFrame data = { 'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'City': ['New York', 'Los Angeles', 'Chicago'] } df = pd.DataFrame(data) # 獲取列名column_names = df.columns print(column_names)
輸出:

Index(['Name', 'Age', 'City'], dtype='object')
2. 轉換為Python 列表
如果你想要一個普通的Python 列表,可以用list()
或.tolist()
:
# 方法一:使用list() col_list = list(df.columns) print(col_list) # 輸出: ['Name', 'Age', 'City'] # 方法二:使用tolist() col_list = df.columns.tolist() print(col_list) # 輸出: ['Name', 'Age', 'City']
3. 遍歷列名
你也可以像處理列表一樣遍歷列名:

for col in df.columns: print(col)
輸出:
Name Age City
小貼士
.columns
是只讀的,但你可以重新賦值來重命名所有列。- 如果你只想查看前幾列或做條件篩選,可以結合切片或列表推導式使用。
例如,查看前兩列:
print(df.columns[:2]) # Index(['Name', 'Age'], ...)
或者篩選以特定字符開頭的列名:
print([col for col in df.columns if col.startswith('A')]) # 如['Age']
基本上就這些。 df.columns
是最核心的方法,搭配tolist()
基本能滿足大多數(shù)需求。
以上是的詳細內容。更多資訊請關注PHP中文網(wǎng)其他相關文章!

熱AI工具

Undress AI Tool
免費脫衣圖片

Undresser.AI Undress
人工智慧驅動的應用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6
視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

要實現(xiàn)PHP結合AI進行文本糾錯與語法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開源NLP庫;2.通過PHP的curl或Guzzle調用API並處理返回結果;3.在應用中展示糾錯信息並允許用戶選擇是否採納;4.使用php-l和PHP_CodeSniffer進行語法檢測與代碼優(yōu)化;5.持續(xù)收集反饋並更新模型或規(guī)則以提升效果。選擇AIAPI時應重點評估準確率、響應速度、價格及對PHP的支持。代碼優(yōu)化應遵循PSR規(guī)範、合理使用緩存、避免循環(huán)查詢、定期審查代碼,並藉助X

用戶語音輸入通過前端JavaScript的MediaRecorderAPI捕獲並發(fā)送至PHP後端;2.PHP將音頻保存為臨時文件後調用STTAPI(如Google或百度語音識別)轉換為文本;3.PHP將文本發(fā)送至AI服務(如OpenAIGPT)獲取智能回復;4.PHP再調用TTSAPI(如百度或Google語音合成)將回復轉為語音文件;5.PHP將語音文件流式返回前端播放,完成交互。整個流程由PHP主導數(shù)據(jù)流轉與錯誤處理,確保各環(huán)節(jié)無縫銜接。

選擇合適的PHP框架需根據(jù)項目需求綜合考慮:Laravel適合快速開發(fā),提供EloquentORM和Blade模板引擎,便於數(shù)據(jù)庫操作和動態(tài)表單渲染;Symfony更靈活,適合複雜系統(tǒng);CodeIgniter輕量,適用於對性能要求較高的簡單應用。 2.確保AI模型準確性需從高質量數(shù)據(jù)訓練、合理選擇評估指標(如準確率、召回率、F1值)、定期性能評估與模型調優(yōu)入手,並通過單元測試和集成測試保障代碼質量,同時持續(xù)監(jiān)控輸入數(shù)據(jù)以防止數(shù)據(jù)漂移。 3.保護用戶隱私需採取多項措施:對敏感數(shù)據(jù)進行加密存儲(如AES

使用Seaborn的jointplot可快速可視化兩個變量間的關係及各自分佈;2.基礎散點圖通過sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實現(xiàn),中心為散點圖,上下和右側顯示直方圖;3.添加回歸線和密度信息可用kind="reg",並結合marginal_kws設置邊緣圖樣式;4.數(shù)據(jù)量大時推薦kind="hex",用

PHP結合AI做視頻內容分析的核心思路是讓PHP作為后端“膠水”,先上傳視頻到云存儲,再調用AI服務(如GoogleCloudVideoAI等)進行異步分析;2.PHP解析返回的JSON結果,提取人物、物體、場景、語音等信息生成智能標簽并存入數(shù)據(jù)庫;3.優(yōu)勢在于利用PHP成熟的Web生態(tài)快速集成AI能力,適合已有PHP系統(tǒng)的項目高效落地;4.常見挑戰(zhàn)包括大文件處理(用預簽名URL直傳云存儲)、異步任務(引入消息隊列)、成本控制(按需分析 預算監(jiān)控)和結果優(yōu)化(標簽規(guī)范化);5.智能標簽顯著提升視

要將AI情感計算技術融入PHP應用,核心是利用雲(yún)服務AIAPI(如Google、AWS、Azure)進行情感分析,通過HTTP請求發(fā)送文本並解析返回的JSON結果,將情感數(shù)據(jù)存入數(shù)據(jù)庫,從而實現(xiàn)用戶反饋的自動化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準確性、成本、語言支持和集成複雜度;2.使用Guzzle或curl發(fā)送請求,存儲情感分數(shù)、標籤及強度等信息;3.構建可視化儀錶盤,支持優(yōu)先級排序、趨勢分析、產(chǎn)品迭代方向和用戶細分;4.應對技術挑戰(zhàn),如API調用限制、數(shù)

PHP開發(fā)AI文本摘要的核心是作為協(xié)調器調用外部AI服務API(如OpenAI、HuggingFace),實現(xiàn)文本預處理、API請求、響應解析與結果展示;2.局限性在於計算性能弱、AI生態(tài)薄弱,應對策略為藉力API、服務解耦和異步處理;3.模型選擇需權衡摘要質量、成本、延遲、並發(fā)、數(shù)據(jù)隱私,推薦使用GPT或BART/T5等抽象式模型;4.性能優(yōu)化包括緩存、異步隊列、批量處理和就近區(qū)域選擇,錯誤處理需覆蓋限流重試、網(wǎng)絡超時、密鑰安全、輸入驗證及日誌記錄,以確保系統(tǒng)穩(wěn)定高效運行。

字符串列表可用join()方法合併,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉為字符串後才能join;3.任意類型列表可直接用str()轉換為帶括號和引號的字符串,適用於調試;4.自定義格式可用生成器表達式結合join()實現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[
