亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

設(shè)計模式6大原則

Original 2016-11-10 09:11:06 596
abstract:單一職責(zé)原則里氏替換原則依賴倒置原則接口隔離原則迪米特法則開閉原則設(shè)計模式六大原則(1):單一職責(zé)原則定義:不要存在多于一個導(dǎo)致類變更的原因。通俗的說,即一個類只負責(zé)一項職責(zé)。問題由來:類T負責(zé)兩個不同的職責(zé):職責(zé)P1,職責(zé)P2。當(dāng)由于職責(zé)P1需求發(fā)生改變而需要修改類T時,有可能會導(dǎo)致原本運行正常的職責(zé)P2功能發(fā)生故障。解決方案:遵循單一職責(zé)原則。分別建立兩個類T1、T2,使T1完成職責(zé)P1功能,
  • 單一職責(zé)原則

  • 里氏替換原則

  • 依賴倒置原則

  • 接口隔離原則

  • 迪米特法則

  • 開閉原則

3.png

設(shè)計模式六大原則(1):單一職責(zé)原則

定義:不要存在多于一個導(dǎo)致類變更的原因。通俗的說,即一個類只負責(zé)一項職責(zé)。

問題由來:類T負責(zé)兩個不同的職責(zé):職責(zé)P1,職責(zé)P2。當(dāng)由于職責(zé)P1需求發(fā)生改變而需要修改類T時,有可能會導(dǎo)致原本運行正常的職責(zé)P2功能發(fā)生故障。

解決方案:遵循單一職責(zé)原則。分別建立兩個類T1、T2,使T1完成職責(zé)P1功能,T2完成職責(zé)P2功能。這樣,當(dāng)修改類T1時,不會使職責(zé)P2發(fā)生故障風(fēng)險;同理,當(dāng)修改T2時,也不會使職責(zé)P1發(fā)生故障風(fēng)險。

說到單一職責(zé)原則,很多人都會不屑一顧。因為它太簡單了。稍有經(jīng)驗的程序員即使從來沒有讀過設(shè)計模式、從來沒有聽說過單一職責(zé)原則,在設(shè)計軟件時也會自覺的遵守這一重要原則,因為這是常識。在軟件編程中,誰也不希望因為修改了一個功能導(dǎo)致其他的功能發(fā)生故障。而避免出現(xiàn)這一問題的方法便是遵循單一職責(zé)原則。雖然單一職責(zé)原則如此簡單,并且被認為是常識,但是即便是經(jīng)驗豐富的程序員寫出的程序,也會有違背這一原則的代碼存在。為什么會出現(xiàn)這種現(xiàn)象呢?因為有職責(zé)擴散。所謂職責(zé)擴散,就是因為某種原因,職責(zé)P被分化為粒度更細的職責(zé)P1和P2。

比如:類T只負責(zé)一個職責(zé)P,這樣設(shè)計是符合單一職責(zé)原則的。后來由于某種原因,也許是需求變更了,也許是程序的設(shè)計者境界提高了,需要將職責(zé)P細分為粒度更細的職責(zé)P1,P2,這時如果要使程序遵循單一職責(zé)原則,需要將類T也分解為兩個類T1和T2,分別負責(zé)P1、P2兩個職責(zé)。但是在程序已經(jīng)寫好的情況下,這樣做簡直太費時間了。所以,簡單的修改類T,用它來負責(zé)兩個職責(zé)是一個比較不錯的選擇,雖然這樣做有悖于單一職責(zé)原則。(這樣做的風(fēng)險在于職責(zé)擴散的不確定性,因為我們不會想到這個職責(zé)P,在未來可能會擴散為P1,P2,P3,P4……Pn。所以記住,在職責(zé)擴散到我們無法控制的程度之前,立刻對代碼進行重構(gòu)。)

舉例說明,用一個類描述動物呼吸這個場景:

class Animal{
    public void breathe(String animal){
        System.out.println(animal+"呼吸空氣");
    }
}
public class Client{
    public static void main(String[] args){
        Animal animal = new Animal();
        animal.breathe("牛");
        animal.breathe("羊");
        animal.breathe("豬");
    }
}

程序上線后,發(fā)現(xiàn)問題了,并不是所有的動物都呼吸空氣的,比如魚就是呼吸水的。修改時如果遵循單一職責(zé)原則,需要將Animal類細分為陸生動物類Terrestrial,水生動物Aquatic,代碼如下:

class Terrestrial{
    public void breathe(String animal){
        System.out.println(animal+"呼吸空氣");
    }
}
class Aquatic{
    public void breathe(String animal){
        System.out.println(animal+"呼吸水");
    }
}
public class Client{
    public static void main(String[] args){
        Terrestrial terrestrial = new Terrestrial();
        terrestrial.breathe("牛");
        terrestrial.breathe("羊");
        terrestrial.breathe("豬");
        
        Aquatic aquatic = new Aquatic();
        aquatic.breathe("魚");
    }
}

我們會發(fā)現(xiàn)如果這樣修改花銷是很大的,除了將原來的類分解之外,還需要修改客戶端。而直接修改類Animal來達成目的雖然違背了單一職責(zé)原則,但花銷卻小的多,代碼如下:

class Animal{
    public void breathe(String animal){
        if("魚".equals(animal)){
            System.out.println(animal+"呼吸水");
        }else{
            System.out.println(animal+"呼吸空氣");
        }
    }
}
public class Client{
    public static void main(String[] args){
        Animal animal = new Animal();
        animal.breathe("牛");
        animal.breathe("羊");
        animal.breathe("豬");
        animal.breathe("魚");
    }
}

可以看到,這種修改方式要簡單的多。但是卻存在著隱患:有一天需要將魚分為呼吸淡水的魚和呼吸海水的魚,則又需要修改Animal類的breathe方法,而對原有代碼的修改會對調(diào)用“豬”“牛”“羊”等相關(guān)功能帶來風(fēng)險,也許某一天你會發(fā)現(xiàn)程序運行的結(jié)果變?yōu)椤芭:粑绷?。這種修改方式直接在代碼級別上違背了單一職責(zé)原則,雖然修改起來最簡單,但隱患卻是最大的。還有一種修改方式:

class Animal{
    public void breathe(String animal){
        System.out.println(animal+"呼吸空氣");
    }
    public void breathe2(String animal){
        System.out.println(animal+"呼吸水");
    }
}
public class Client{
    public static void main(String[] args){
        Animal animal = new Animal();
        animal.breathe("牛");
        animal.breathe("羊");
        animal.breathe("豬");
        animal.breathe2("魚");
    }
}

可以看到,這種修改方式?jīng)]有改動原來的方法,而是在類中新加了一個方法,這樣雖然也違背了單一職責(zé)原則,但在方法級別上卻是符合單一職責(zé)原則的,因為它并沒有動原來方法的代碼。這三種方式各有優(yōu)缺點,那么在實際編程中,采用哪一中呢?其實這真的比較難說,需要根據(jù)實際情況來確定。我的原則是:只有邏輯足夠簡單,才可以在代碼級別上違反單一職責(zé)原則;只有類中方法數(shù)量足夠少,才可以在方法級別上違反單一職責(zé)原則;

例如本文所舉的這個例子,它太簡單了,它只有一個方法,所以,無論是在代碼級別上違反單一職責(zé)原則,還是在方法級別上違反,都不會造成太大的影響。實際應(yīng)用中的類都要復(fù)雜的多,一旦發(fā)生職責(zé)擴散而需要修改類時,除非這個類本身非常簡單,否則還是遵循單一職責(zé)原則的好。

遵循單一職責(zé)原的優(yōu)點有:

  • 可以降低類的復(fù)雜度,一個類只負責(zé)一項職責(zé),其邏輯肯定要比負責(zé)多項職責(zé)簡單的多;

  • 提高類的可讀性,提高系統(tǒng)的可維護性;

  • 變更引起的風(fēng)險降低,變更是必然的,如果單一職責(zé)原則遵守的好,當(dāng)修改一個功能時,可以顯著降低對其他功能的影響。

需要說明的一點是單一職責(zé)原則不只是面向?qū)ο缶幊趟枷胨赜械?,只要是模塊化的程序設(shè)計,都適用單一職責(zé)原則。

設(shè)計模式六大原則(2):里氏替換原則

定義1:如果對每一個類型為 T1的對象 o1,都有類型為 T2 的對象o2,使得以T1定義的所有程序 P 在所有的對象 o1 都代換成 o2 時,程序P的行為沒有發(fā)生變化,那么類型T2 是類型T1的子類型。

定義2:所有引用基類的地方必須能透明地使用其子類的對象。

問題由來:有一功能P1,由類A完成?,F(xiàn)需要將功能P1進行擴展,擴展后的功能為P,其中P由原有功能P1與新功能P2組成。新功能P由類A的子類B來完成,則子類B在完成新功能P2的同時,有可能會導(dǎo)致原有功能P1發(fā)生故障。

解決方案:當(dāng)使用繼承時,遵循里氏替換原則。類B繼承類A時,除添加新的方法完成新增功能P2外,盡量不要重寫父類A的方法,也盡量不要重載父類A的方法。

繼承包含這樣一層含義:父類中凡是已經(jīng)實現(xiàn)好的方法(相對于抽象方法而言),實際上是在設(shè)定一系列的規(guī)范和契約,雖然它不強制要求所有的子類必須遵從這些契約,但是如果子類對這些非抽象方法任意修改,就會對整個繼承體系造成破壞。而里氏替換原則就是表達了這一層含義。

繼承作為面向?qū)ο笕筇匦灾?,在給程序設(shè)計帶來巨大便利的同時,也帶來了弊端。比如使用繼承會給程序帶來侵入性,程序的可移植性降低,增加了對象間的耦合性,如果一個類被其他的類所繼承,則當(dāng)這個類需要修改時,必須考慮到所有的子類,并且父類修改后,所有涉及到子類的功能都有可能會產(chǎn)生故障。

舉例說明繼承的風(fēng)險,我們需要完成一個兩數(shù)相減的功能,由類A來負責(zé)。

class A{
    public int func1(int a, int b){
        return a-b;
    }
}
public class Client{
    public static void main(String[] args){
        A a = new A();
        System.out.println("100-50="+a.func1(100, 50));
        System.out.println("100-80="+a.func1(100, 80));
    }
}

后來,我們需要增加一個新的功能:完成兩數(shù)相加,然后再與100求和,由類B來負責(zé)。即類B需要完成兩個功能:

兩數(shù)相減。

兩數(shù)相加,然后再加100。

由于類A已經(jīng)實現(xiàn)了第一個功能,所以類B繼承類A后,只需要再完成第二個功能就可以了,代碼如下:

class B extends A{
    public int func1(int a, int b){
        return a+b;
    }
    
    public int func2(int a, int b){
        return func1(a,b)+100;
    }
}
public class Client{
    public static void main(String[] args){
        B b = new B();
        System.out.println("100-50="+b.func1(100, 50));
        System.out.println("100-80="+b.func1(100, 80));
        System.out.println("100+20+100="+b.func2(100, 20));
    }
}

類B完成后,運行結(jié)果:

100-50=150

100-80=180

100+20+100=220

我們發(fā)現(xiàn)原本運行正常的相減功能發(fā)生了錯誤。原因就是類B在給方法起名時無意中重寫了父類的方法,造成所有運行相減功能的代碼全部調(diào)用了類B重寫后的方法,造成原本運行正常的功能出現(xiàn)了錯誤。在本例中,引用基類A完成的功能,換成子類B之后,發(fā)生了異常。在實際編程中,我們常常會通過重寫父類的方法來完成新的功能,這樣寫起來雖然簡單,但是整個繼承體系的可復(fù)用性會比較差,特別是運用多態(tài)比較頻繁時,程序運行出錯的幾率非常大。如果非要重寫父類的方法,比較通用的做法是:原來的父類和子類都繼承一個更通俗的基類,原有的繼承關(guān)系去掉,采用依賴、聚合,組合等關(guān)系代替。

里氏替換原則通俗的來講就是:子類可以擴展父類的功能,但不能改變父類原有的功能。它包含以下4層含義:

  • 子類可以實現(xiàn)父類的抽象方法,但不能覆蓋父類的非抽象方法。

  • 子類中可以增加自己特有的方法。

  • 當(dāng)子類的方法重載父類的方法時,方法的前置條件(即方法的形參)要比父類方法的輸入?yún)?shù)更寬松。

  • 當(dāng)子類的方法實現(xiàn)父類的抽象方法時,方法的后置條件(即方法的返回值)要比父類更嚴格。

看上去很不可思議,因為我們會發(fā)現(xiàn)在自己編程中常常會違反里氏替換原則,程序照樣跑的好好的。所以大家都會產(chǎn)生這樣的疑問,假如我非要不遵循里氏替換原則會有什么后果?

后果就是:你寫的代碼出問題的幾率將會大大增加。

設(shè)計模式六大原則(3):依賴倒置原則

定義:高層模塊不應(yīng)該依賴低層模塊,二者都應(yīng)該依賴其抽象;抽象不應(yīng)該依賴細節(jié);細節(jié)應(yīng)該依賴抽象。                         

問題由來:類A直接依賴類B,假如要將類A改為依賴類C,則必須通過修改類A的代碼來達成。這種場景下,類A一般是高層模塊,負責(zé)復(fù)雜的業(yè)務(wù)邏輯;類B和類C是低層模塊,負責(zé)基本的原子操作;假如修改類A,會給程序帶來不必要的風(fēng)險。

解決方案:將類A修改為依賴接口I,類B和類C各自實現(xiàn)接口I,類A通過接口I間接與類B或者類C發(fā)生聯(lián)系,則會大大降低修改類A的幾率。

依賴倒置原則基于這樣一個事實:相對于細節(jié)的多變性,抽象的東西要穩(wěn)定的多。以抽象為基礎(chǔ)搭建起來的架構(gòu)比以細節(jié)為基礎(chǔ)搭建起來的架構(gòu)要穩(wěn)定的多。在java中,抽象指的是接口或者抽象類,細節(jié)就是具體的實現(xiàn)類,使用接口或者抽象類的目的是制定好規(guī)范和契約,而不去涉及任何具體的操作,把展現(xiàn)細節(jié)的任務(wù)交給他們的實現(xiàn)類去完成。

依賴倒置原則的核心思想是面向接口編程,我們依舊用一個例子來說明面向接口編程比相對于面向?qū)崿F(xiàn)編程好在什么地方。場景是這樣的,母親給孩子講故事,只要給她一本書,她就可以照著書給孩子講故事了。代碼如下:

class Book{
    public String getContent(){
        return "很久很久以前有一個阿拉伯的故事……";
    }
}
class Mother{
    public void narrate(Book book){
        System.out.println("媽媽開始講故事");
        System.out.println(book.getContent());
    }
}
public class Client{
    public static void main(String[] args){
        Mother mother = new Mother();
        mother.narrate(new Book());
    }
}

運行結(jié)果:

媽媽開始講故事

很久很久以前有一個阿拉伯的故事……

運行良好,假如有一天,需求變成這樣:不是給書而是給一份報紙,讓這位母親講一下報紙上的故事,報紙的代碼如下:

class Newspaper{
    public String getContent(){
        return "林書豪38+7領(lǐng)導(dǎo)尼克斯擊敗湖人……";
    }
}

這位母親卻辦不到,因為她居然不會讀報紙上的故事,這太荒唐了,只是將書換成報紙,居然必須要修改Mother才能讀。假如以后需求換成雜志呢?換成網(wǎng)頁呢?還要不斷地修改Mother,這顯然不是好的設(shè)計。原因就是Mother與Book之間的耦合性太高了,必須降低他們之間的耦合度才行。

我們引入一個抽象的接口IReader。讀物,只要是帶字的都屬于讀物:

interface IReader{
    public String getContent();
}

Mother類與接口IReader發(fā)生依賴關(guān)系,而Book和Newspaper都屬于讀物的范疇,他們各自都去實現(xiàn)IReader接口,這樣就符合依賴倒置原則了,代碼修改為:

class Newspaper implements IReader {
    public String getContent(){
        return "林書豪17+9助尼克斯擊敗老鷹……";
    }
}
class Book implements IReader{
    public String getContent(){
        return "很久很久以前有一個阿拉伯的故事……";
    }
}
class Mother{
    public void narrate(IReader reader){
        System.out.println("媽媽開始講故事");
        System.out.println(reader.getContent());
    }
}
public class Client{
    public static void main(String[] args){
        Mother mother = new Mother();
        mother.narrate(new Book());
        mother.narrate(new Newspaper());
    }
}

運行結(jié)果:

媽媽開始講故事

很久很久以前有一個阿拉伯的故事……

媽媽開始講故事

林書豪17+9助尼克斯擊敗老鷹……

這樣修改后,無論以后怎樣擴展Client類,都不需要再修改Mother類了。這只是一個簡單的例子,實際情況中,代表高層模塊的Mother類將負責(zé)完成主要的業(yè)務(wù)邏輯,一旦需要對它進行修改,引入錯誤的風(fēng)險極大。所以遵循依賴倒置原則可以降低類之間的耦合性,提高系統(tǒng)的穩(wěn)定性,降低修改程序造成的風(fēng)險。

采用依賴倒置原則給多人并行開發(fā)帶來了極大的便利,比如上例中,原本Mother類與Book類直接耦合時,Mother類必須等Book類編碼完成后才可以進行編碼,因為Mother類依賴于Book類。修改后的程序則可以同時開工,互不影響,因為Mother與Book類一點關(guān)系也沒有。參與協(xié)作開發(fā)的人越多、項目越龐大,采用依賴導(dǎo)致原則的意義就越重大?,F(xiàn)在很流行的TDD開發(fā)模式就是依賴倒置原則最成功的應(yīng)用。

傳遞依賴關(guān)系有三種方式,以上的例子中使用的方法是接口傳遞,另外還有兩種傳遞方式:構(gòu)造方法傳遞和setter方法傳遞,相信用過Spring框架的,對依賴的傳遞方式一定不會陌生。

在實際編程中,我們一般需要做到如下3點:

  • 低層模塊盡量都要有抽象類或接口,或者兩者都有。

  • 變量的聲明類型盡量是抽象類或接口。

  • 使用繼承時遵循里氏替換原則。

依賴倒置原則的核心就是要我們面向接口編程,理解了面向接口編程,也就理解了依賴倒置。

設(shè)計模式六大原則(4):接口隔離原則                      

定義:客戶端不應(yīng)該依賴它不需要的接口;一個類對另一個類的依賴應(yīng)該建立在最小的接口上。                                                     

問題由來:類A通過接口I依賴類B,類C通過接口I依賴類D,如果接口I對于類A和類B來說不是最小接口,則類B和類D必須去實現(xiàn)他們不需要的方法。

解決方案:將臃腫的接口I拆分為獨立的幾個接口,類A和類C分別與他們需要的接口建立依賴關(guān)系。也就是采用接口隔離原則。

舉例來說明接口隔離原則:

2012110231.jpg

這個圖的意思是:類A依賴接口I中的方法1、方法2、方法3,類B是對類A依賴的實現(xiàn)。類C依賴接口I中的方法1、方法4、方法5,類D是對類C依賴的實現(xiàn)。對于類B和類D來說,雖然他們都存在著用不到的方法(也就是圖中紅色字體標記的方法),但由于實現(xiàn)了接口I,所以也必須要實現(xiàn)這些用不到的方法。對類圖不熟悉的可以參照程序代碼來理解,代碼如下:

interface I {
    public void method1();
    public void method2();
    public void method3();
    public void method4();
    public void method5();
}
class A{
    public void depend1(I i){
        i.method1();
    }
    public void depend2(I i){
        i.method2();
    }
    public void depend3(I i){
        i.method3();
    }
}
class B implements I{
    public void method1() {
        System.out.println("類B實現(xiàn)接口I的方法1");
    }
    public void method2() {
        System.out.println("類B實現(xiàn)接口I的方法2");
    }
    public void method3() {
        System.out.println("類B實現(xiàn)接口I的方法3");
    }
    //對于類B來說,method4和method5不是必需的,但是由于接口A中有這兩個方法,
    //所以在實現(xiàn)過程中即使這兩個方法的方法體為空,也要將這兩個沒有作用的方法進行實現(xiàn)。
    public void method4() {}
    public void method5() {}
}
class C{
    public void depend1(I i){
        i.method1();
    }
    public void depend2(I i){
        i.method4();
    }
    public void depend3(I i){
        i.method5();
    }
}
class D implements I{
    public void method1() {
        System.out.println("類D實現(xiàn)接口I的方法1");
    }
    //對于類D來說,method2和method3不是必需的,但是由于接口A中有這兩個方法,
    //所以在實現(xiàn)過程中即使這兩個方法的方法體為空,也要將這兩個沒有作用的方法進行實現(xiàn)。
    public void method2() {}
    public void method3() {}
    public void method4() {
        System.out.println("類D實現(xiàn)接口I的方法4");
    }
    public void method5() {
        System.out.println("類D實現(xiàn)接口I的方法5");
    }
}
public class Client{
    public static void main(String[] args){
        A a = new A();
        a.depend1(new B());
        a.depend2(new B());
        a.depend3(new B());
        
        C c = new C();
        c.depend1(new D());
        c.depend2(new D());
        c.depend3(new D());
    }
}

可以看到,如果接口過于臃腫,只要接口中出現(xiàn)的方法,不管對依賴于它的類有沒有用處,實現(xiàn)類中都必須去實現(xiàn)這些方法,這顯然不是好的設(shè)計。如果將這個設(shè)計修改為符合接口隔離原則,就必須對接口I進行拆分。在這里我們將原有的接口I拆分為三個接口,拆分后的設(shè)計如圖所示:

5.jpg

照例貼出程序的代碼,供不熟悉類圖的朋友參考:

interface I1 {
    public void method1();
}
interface I2 {
    public void method2();
    public void method3();
}
interface I3 {
    public void method4();
    public void method5();
}
class A{
    public void depend1(I1 i){
        i.method1();
    }
    public void depend2(I2 i){
        i.method2();
    }
    public void depend3(I2 i){
        i.method3();
    }
}
class B implements I1, I2{
    public void method1() {
        System.out.println("類B實現(xiàn)接口I1的方法1");
    }
    public void method2() {
        System.out.println("類B實現(xiàn)接口I2的方法2");
    }
    public void method3() {
        System.out.println("類B實現(xiàn)接口I2的方法3");
    }
}
class C{
    public void depend1(I1 i){
        i.method1();
    }
    public void depend2(I3 i){
        i.method4();
    }
    public void depend3(I3 i){
        i.method5();
    }
}
class D implements I1, I3{
    public void method1() {
        System.out.println("類D實現(xiàn)接口I1的方法1");
    }
    public void method4() {
        System.out.println("類D實現(xiàn)接口I3的方法4");
    }
    public void method5() {
        System.out.println("類D實現(xiàn)接口I3的方法5");
    }
}

接口隔離原則的含義是:建立單一接口,不要建立龐大臃腫的接口,盡量細化接口,接口中的方法盡量少。也就是說,我們要為各個類建立專用的接口,而不要試圖去建立一個很龐大的接口供所有依賴它的類去調(diào)用。本文例子中,將一個龐大的接口變更為3個專用的接口所采用的就是接口隔離原則。在程序設(shè)計中,依賴幾個專用的接口要比依賴一個綜合的接口更靈活。接口是設(shè)計時對外部設(shè)定的“契約”,通過分散定義多個接口,可以預(yù)防外來變更的擴散,提高系統(tǒng)的靈活性和可維護性。

說到這里,很多人會覺的接口隔離原則跟之前的單一職責(zé)原則很相似,其實不然。其一,單一職責(zé)原則原注重的是職責(zé);而接口隔離原則注重對接口依賴的隔離。其二,單一職責(zé)原則主要是約束類,其次才是接口和方法,它針對的是程序中的實現(xiàn)和細節(jié);而接口隔離原則主要約束接口接口,主要針對抽象,針對程序整體框架的構(gòu)建。

采用接口隔離原則對接口進行約束時,要注意以下幾點:

接口盡量小,但是要有限度。對接口進行細化可以提高程序設(shè)計靈活性是不掙的事實,但是如果過小,則會造成接口數(shù)量過多,使設(shè)計復(fù)雜化。所以一定要適度。

為依賴接口的類定制服務(wù),只暴露給調(diào)用的類它需要的方法,它不需要的方法則隱藏起來。只有專注地為一個模塊提供定制服務(wù),才能建立最小的依賴關(guān)系。

提高內(nèi)聚,減少對外交互。使接口用最少的方法去完成最多的事情。

運用接口隔離原則,一定要適度,接口設(shè)計的過大或過小都不好。設(shè)計接口的時候,只有多花些時間去思考和籌劃,才能準確地實踐這一原則。

設(shè)計模式六大原則(5):迪米特法則

定義:一個對象應(yīng)該對其他對象保持最少的了解。

問題由來:類與類之間的關(guān)系越密切,耦合度越大,當(dāng)一個類發(fā)生改變時,對另一個類的影響也越大。

解決方案:盡量降低類與類之間的耦合。

自從我們接觸編程開始,就知道了軟件編程的總的原則:低耦合,高內(nèi)聚。無論是面向過程編程還是面向?qū)ο缶幊?,只有使各個模塊之間的耦合盡量的低,才能提高代碼的復(fù)用率。低耦合的優(yōu)點不言而喻,但是怎么樣編程才能做到低耦合呢?那正是迪米特法則要去完成的。


迪米特法則又叫最少知道原則,通俗的來講,就是一個類對自己依賴的類知道的越少越好。也就是說,對于被依賴的類來說,無論邏輯多么復(fù)雜,都盡量地的將邏輯封裝在類的內(nèi)部,對外除了提供的public方法,不對外泄漏任何信息。迪米特法則還有一個更簡單的定義:只與直接的朋友通信。首先來解釋一下什么是直接的朋友:每個對象都會與其他對象有耦合關(guān)系,只要兩個對象之間有耦合關(guān)系,我們就說這兩個對象之間是朋友關(guān)系。耦合的方式很多,依賴、關(guān)聯(lián)、組合、聚合等。其中,我們稱出現(xiàn)成員變量、方法參數(shù)、方法返回值中的類為直接的朋友,而出現(xiàn)在局部變量中的類則不是直接的朋友。也就是說,陌生的類最好不要作為局部變量的形式出現(xiàn)在類的內(nèi)部。

舉一個例子:有一個集團公司,下屬單位有分公司和直屬部門,現(xiàn)在要求打印出所有下屬單位的員工ID。先來看一下違反迪米特法則的設(shè)計。

 //總公司員工
class Employee{
    private String id;
    public void setId(String id){
        this.id = id;
    }
    public String getId(){
        return id;
    }
}
//分公司員工
class SubEmployee{
    private String id;
    public void setId(String id){
        this.id = id;
    }
    public String getId(){
        return id;
    }
}
class SubCompanyManager{
    public List<SubEmployee> getAllEmployee(){
        List<SubEmployee> list = new ArrayList<SubEmployee>();
        for(int i=0; i<100; i++){
            SubEmployee emp = new SubEmployee();
            //為分公司人員按順序分配一個ID
            emp.setId("分公司"+i);
            list.add(emp);
        }
        return list;
    }
}
class CompanyManager{
    public List<Employee> getAllEmployee(){
        List<Employee> list = new ArrayList<Employee>();
        for(int i=0; i<30; i++){
            Employee emp = new Employee();
            //為總公司人員按順序分配一個ID
            emp.setId("總公司"+i);
            list.add(emp);
        }
        return list;
    }
    
    public void printAllEmployee(SubCompanyManager sub){
        List<SubEmployee> list1 = sub.getAllEmployee();
        for(SubEmployee e:list1){
            System.out.println(e.getId());
        }
        List<Employee> list2 = this.getAllEmployee();
        for(Employee e:list2){
            System.out.println(e.getId());
        }
    }
}
public class Client{
    public static void main(String[] args){
        CompanyManager e = new CompanyManager();
        e.printAllEmployee(new SubCompanyManager());
    }
}

現(xiàn)在這個設(shè)計的主要問題出在CompanyManager中,根據(jù)迪米特法則,只與直接的朋友發(fā)生通信,而SubEmployee類并不是CompanyManager類的直接朋友(以局部變量出現(xiàn)的耦合不屬于直接朋友),從邏輯上講總公司只與他的分公司耦合就行了,與分公司的員工并沒有任何聯(lián)系,這樣設(shè)計顯然是增加了不必要的耦合。按照迪米特法則,應(yīng)該避免類中出現(xiàn)這樣非直接朋友關(guān)系的耦合。修改后的代碼如下:

class SubCompanyManager{
    public List<SubEmployee> getAllEmployee(){
        List<SubEmployee> list = new ArrayList<SubEmployee>();
        for(int i=0; i<100; i++){
            SubEmployee emp = new SubEmployee();
            //為分公司人員按順序分配一個ID
            emp.setId("分公司"+i);
            list.add(emp);
        }
        return list;
    }
    public void printEmployee(){
        List<SubEmployee> list = this.getAllEmployee();
        for(SubEmployee e:list){
            System.out.println(e.getId());
        }
    }
}
class CompanyManager{
    public List<Employee> getAllEmployee(){
        List<Employee> list = new ArrayList<Employee>();
        for(int i=0; i<30; i++){
            Employee emp = new Employee();
            //為總公司人員按順序分配一個ID
            emp.setId("總公司"+i);
            list.add(emp);
        }
        return list;
    }
    
    public void printAllEmployee(SubCompanyManager sub){
        sub.printEmployee();
        List<Employee> list2 = this.getAllEmployee();
        for(Employee e:list2){
            System.out.println(e.getId());
        }
    }
}

修改后,為分公司增加了打印人員ID的方法,總公司直接調(diào)用來打印,從而避免了與分公司的員工發(fā)生耦合。

迪米特法則的初衷是降低類之間的耦合,由于每個類都減少了不必要的依賴,因此的確可以降低耦合關(guān)系。但是凡事都有度,雖然可以避免與非直接的類通信,但是要通信,必然會通過一個“中介”來發(fā)生聯(lián)系,例如本例中,總公司就是通過分公司這個“中介”來與分公司的員工發(fā)生聯(lián)系的。過分的使用迪米特原則,會產(chǎn)生大量這樣的中介和傳遞類,導(dǎo)致系統(tǒng)復(fù)雜度變大。所以在采用迪米特法則時要反復(fù)權(quán)衡,既做到結(jié)構(gòu)清晰,又要高內(nèi)聚低耦合。

設(shè)計模式六大原則(6):開閉原則

定義:一個軟件實體如類、模塊和函數(shù)應(yīng)該對擴展開放,對修改關(guān)閉。

問題由來:在軟件的生命周期內(nèi),因為變化、升級和維護等原因需要對軟件原有代碼進行修改時,可能會給舊代碼中引入錯誤,也可能會使我們不得不對整個功能進行重構(gòu),并且需要原有代碼經(jīng)過重新測試。

解決方案:當(dāng)軟件需要變化時,盡量通過擴展軟件實體的行為來實現(xiàn)變化,而不是通過修改已有的代碼來實現(xiàn)變化。

開閉原則是面向?qū)ο笤O(shè)計中最基礎(chǔ)的設(shè)計原則,它指導(dǎo)我們?nèi)绾谓⒎€(wěn)定靈活的系統(tǒng)。開閉原則可能是設(shè)計模式六項原則中定義最模糊的一個了,它只告訴我們對擴展開放,對修改關(guān)閉,可是到底如何才能做到對擴展開放,對修改關(guān)閉,并沒有明確的告訴我們。以前,如果有人告訴我“你進行設(shè)計的時候一定要遵守開閉原則”,我會覺的他什么都沒說,但貌似又什么都說了。因為開閉原則真的太虛了。

其實,我們遵循設(shè)計模式前面5大原則,以及使用23種設(shè)計模式的目的就是遵循開閉原則。也就是說,只要我們對前面5項原則遵守的好了,設(shè)計出的軟件自然是符合開閉原則的,這個開閉原則更像是前面五項原則遵守程度的“平均得分”,前面5項原則遵守的好,平均分自然就高,說明軟件設(shè)計開閉原則遵守的好;如果前面5項原則遵守的不好,則說明開閉原則遵守的不好。

再回想一下前面說的5項原則,恰恰是告訴我們用抽象構(gòu)建框架,用實現(xiàn)擴展細節(jié)的注意事項而已:

單一職責(zé)原則告訴我們實現(xiàn)類要職責(zé)單一;

里氏替換原則告訴我們不要破壞繼承體系;

依賴倒置原則告訴我們要面向接口編程;

接口隔離原則告訴我們在設(shè)計接口的時候要精簡單一;

迪米特法則告訴我們要降低耦合。

而開閉原則是總綱,他告訴我們要對擴展開放,對修改關(guān)閉。

如何去遵守這六個原則。對這六個原則的遵守并不是是和否的問題,而是多和少的問題,也就是說,我們一般不會說有沒有遵守,而是說遵守程度的多少。任何事都是過猶不及,設(shè)計模式的六個設(shè)計原則也是一樣,制定這六個原則的目的并不是要我們刻板的遵守他們,而需要根據(jù)實際情況靈活運用。對他們的遵守程度只要在一個合理的范圍內(nèi),就算是良好的設(shè)計。我們用一幅圖來說明一下。

6.jpg

圖中的每一條維度各代表一項原則,我們依據(jù)對這項原則的遵守程度在維度上畫一個點,則如果對這項原則遵守的合理的話,這個點應(yīng)該落在紅色的同心圓內(nèi)部;如果遵守的差,點將會在小圓內(nèi)部;如果過度遵守,點將會落在大圓外部。一個良好的設(shè)計體現(xiàn)在圖中,應(yīng)該是六個頂點都在同心圓中的六邊形。

7.jpg

在上圖中,設(shè)計1、設(shè)計2屬于良好的設(shè)計,他們對六項原則的遵守程度都在合理的范圍內(nèi);設(shè)計3、設(shè)計4設(shè)計雖然有些不足,但也基本可以接受;設(shè)計5則嚴重不足,對各項原則都沒有很好的遵守;而設(shè)計6則遵守過渡了,設(shè)計5和設(shè)計6都是迫切需要重構(gòu)的設(shè)計。


 


Release Notes

Popular Entries