Memeluk Klasifikasi Imej Wajah: Panduan Komprehensif Dengan Contoh
Mar 07, 2025 am 09:34 AMmemanfaatkan wajah pelukan untuk klasifikasi imej: panduan komprehensif
Klasifikasi imej, asas AI dan pembelajaran mesin, mencari aplikasi di pelbagai bidang, dari pengiktirafan wajah kepada pengimejan perubatan. Pakaian muka muncul sebagai platform yang kuat untuk tugas ini, terutamanya bagi mereka yang biasa dengan pemprosesan bahasa semulajadi (NLP) dan semakin, penglihatan komputer. Butiran panduan ini menggunakan muka pelukan untuk klasifikasi imej, memenuhi kedua -dua pemula dan pengamal yang berpengalaman.
memahami klasifikasi imej dan memeluk kelebihan wajah
Klasifikasi imej melibatkan mengkategorikan imej ke dalam kelas yang telah ditetapkan menggunakan algoritma yang menganalisis kandungan visual dan meramalkan kategori berdasarkan corak yang dipelajari. Rangkaian Neural Convolutional (CNNs) adalah pendekatan standard kerana keupayaan pengiktirafan corak mereka. Untuk menyelam yang lebih mendalam ke dalam CNN, rujuk artikel kami "Pengenalan kepada Rangkaian Neural Convolutional (CNNS)." Artikel "Klasifikasi dalam Pembelajaran Mesin: Pengenalan" kami memberikan pemahaman yang lebih luas tentang algoritma klasifikasi.
muka pelukan menawarkan beberapa kelebihan:
faedah utama menggunakan muka pelukan untuk klasifikasi imej
- kebolehcapaian: API intuitif dan dokumentasi komprehensif memenuhi semua tahap kemahiran.
- Model pra-terlatih: Repositori yang luas model pra-terlatih membolehkan penalaan yang cekap pada dataset tersuai, meminimumkan masa latihan dan sumber pengiraan. Pengguna boleh melatih dan menggunakan model mereka sendiri.
- Komuniti & Sokongan: Komuniti yang bersemangat menyediakan sokongan yang tidak ternilai dan bantuan penyelesaian masalah.
Penyediaan Data dan Preprocessing
Panduan ini menggunakan dataset "kacang" yang memeluk untuk demonstrasi. Selepas memuatkan, kami akan memvisualisasikan data sebelum pra -proses. Notebook Google Colab yang disertakan menyediakan kod. Kod ini diilhamkan dengan memeluk dokumentasi rasmi Face.
Keperluan Perpustakaan:
Pasang perpustakaan yang diperlukan menggunakan PIP:
Mulakan semula kernel selepas pemasangan. Import Perpustakaan yang diperlukan:
pip -q install datasets pip -q install transformers=='4.29.0' pip -q install tensorflow=='2.15' pip -q install evaluate pip -q install --upgrade accelerate
import torch import torchvision import numpy as np import evaluate from datasets import load_dataset from huggingface_hub import notebook_login from torchvision import datasets, transforms from torch.utils.data import DataLoader from transformers import DefaultDataCollator from transformers import AutoImageProcessor from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor from transformers import AutoModelForImageClassification, TrainingArguments, Trainer import matplotlib.pyplot as pltpemuatan data dan organisasi:
Muatkan dataset:
pip -q install datasets pip -q install transformers=='4.29.0' pip -q install tensorflow=='2.15' pip -q install evaluate pip -q install --upgrade accelerate
Dataset mengandungi 1034 imej, masing -masing dengan 'image_file_path', 'imej' (PIL objek), dan 'label' (0: angular_leaf_spot, 1: bean_rust, 2: sihat).
Fungsi penolong menggambarkan imej rawak:
import torch import torchvision import numpy as np import evaluate from datasets import load_dataset from huggingface_hub import notebook_login from torchvision import datasets, transforms from torch.utils.data import DataLoader from transformers import DefaultDataCollator from transformers import AutoImageProcessor from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor from transformers import AutoModelForImageClassification, TrainingArguments, Trainer import matplotlib.pyplot as plt
Bayangkan enam imej rawak:
beans_train = load_dataset("beans", split="train")
Contoh gambar dari dataset kacang
preprocessing data:
Buat Label Mappings:
labels_names = {0: "angular_leaf_spot", 1: "bean_rust", 2: "healthy"} def display_random_images(dataset, num_images=4): # ... (function code as in original input) ...
pemuatan model dan penalaan halus
display_random_images(beans_train, num_images=6)
Muatkan model VIT pra-terlatih:
Kod memuatkan model pra-terlatih, mentakrifkan transformasi (saiz semula, normalisasi), dan menyediakan dataset untuk latihan. Metrik ketepatan ditakrifkan untuk penilaian.
beans_train = beans_train.train_test_split(test_size=0.2)
Log masuk untuk memeluk wajah:
(ikuti arahan di skrin)
labels = beans_train["train"].features["labels"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label
Konfigurasikan dan memulakan latihan:
(hasil latihan seperti yang ditunjukkan dalam input asal)
checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint) # ... (rest of the preprocessing code as in original input) ...
penggunaan model dan integrasi
Tolak model terlatih ke hab muka yang memeluk:
Model ini kemudiannya boleh diakses dan digunakan melalui:
notebook_login()
- portal muka memeluk:
- secara langsung memuat naik imej untuk ramalan. Perpustakaan Transformers:
- Gunakan model dalam kod python anda. REST API:
- Gunakan titik akhir API yang disediakan untuk ramalan. Contoh Menggunakan API:
training_args = TrainingArguments( # ... (training arguments as in original input) ... ) trainer = Trainer( # ... (trainer configuration as in original input) ... ) trainer.train()
Panduan ini menyediakan klasifikasi imej yang komprehensif menggunakan wajah pelukan. Sumber pembelajaran lebih lanjut termasuk:
"Pengenalan Menggunakan Transformers dan Hugging Face"
- "Pemprosesan Imej dengan Python" Track Skill
- "Apakah pengiktirafan imej?" Artikel
- Panduan ini memberi kuasa kepada pengguna semua peringkat untuk memanfaatkan wajah pelukan untuk projek klasifikasi imej mereka.
Atas ialah kandungan terperinci Memeluk Klasifikasi Imej Wajah: Panduan Komprehensif Dengan Contoh. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Ingat banjir model Cina sumber terbuka yang mengganggu industri Genai awal tahun ini? Walaupun Deepseek mengambil sebahagian besar tajuk utama, Kimi K1.5 adalah salah satu nama yang terkenal dalam senarai. Dan model itu agak sejuk.

Menjelang pertengahan tahun 2025, AI "perlumbaan senjata" dipanaskan, dan Xai dan Anthropic kedua-duanya mengeluarkan model perdana mereka, Grok 4 dan Claude 4. Kedua-dua model ini berada di hujung falsafah reka bentuk dan platform penempatan, namun mereka

Tetapi kita mungkin tidak perlu menunggu 10 tahun untuk melihatnya. Malah, apa yang boleh dianggap sebagai gelombang pertama yang benar-benar berguna, mesin seperti manusia sudah ada di sini. Tahun -tahun kebelakangan ini telah melihat beberapa prototaip dan model pengeluaran melangkah keluar dari T

Sehingga tahun sebelumnya, kejuruteraan segera dianggap sebagai kemahiran penting untuk berinteraksi dengan model bahasa yang besar (LLM). Walau bagaimanapun, baru -baru ini, LLM telah maju dengan ketara dalam kebolehan pemikiran dan pemahaman mereka. Sememangnya, jangkaan kami

Saya pasti anda mesti tahu mengenai ejen AI umum, Manus. Ia dilancarkan beberapa bulan yang lalu, dan selama bulan -bulan, mereka telah menambah beberapa ciri baru kepada sistem mereka. Sekarang, anda boleh menjana video, membuat laman web, dan melakukan banyak

Dibina di atas enjin kedalaman saraf proprietari Leia, aplikasinya memproses imej dan menambah kedalaman semula jadi bersama -sama dengan gerakan simulasi -seperti kuali, zum, dan kesan paralaks -untuk membuat gulungan video pendek yang memberikan kesan melangkah ke SCE

Satu kajian baru dari penyelidik di King's College London dan University of Oxford berkongsi hasil apa yang berlaku ketika Openai, Google dan Anthropic dibuang bersama dalam pertandingan cutthroat berdasarkan dilema banduan berulang. Ini tidak

Gambar sesuatu yang canggih, seperti enjin AI yang bersedia memberikan maklum balas terperinci mengenai koleksi pakaian baru dari Milan, atau analisis pasaran automatik untuk perniagaan yang beroperasi di seluruh dunia, atau sistem pintar yang menguruskan armada kenderaan yang besar.
