亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Jadual Kandungan
101 Buku
Ciptaan Kami
Kami berada di Sederhana
Rumah pembangunan bahagian belakang Tutorial Python Teknik Merangkak Web Python lanjutan untuk Pengumpulan Data yang Cekap

Teknik Merangkak Web Python lanjutan untuk Pengumpulan Data yang Cekap

Jan 14, 2025 pm 08:19 PM

dvanced Python Web Crawling Techniques for Efficient Data Collection

Sebagai pengarang yang prolifik, saya menjemput anda untuk meneroka penerbitan Amazon saya. Ingat untuk mengikuti profil Medium saya untuk sokongan berterusan. Pertunangan anda tidak ternilai!

Pengekstrakan data yang cekap daripada web adalah kritikal. Keupayaan teguh Python menjadikannya ideal untuk mencipta perangkak web berskala dan berkesan. Artikel ini memperincikan lima teknik lanjutan untuk meningkatkan dengan ketara projek mengikis web anda.

1. Merangkak Asynchronous dengan asyncio dan aiohttp:

Pengaturcaraan tak segerak mempercepatkan merangkak web secara mendadak. Pustaka asyncio Python, ditambah dengan aiohttp, mendayakan permintaan HTTP serentak, meningkatkan kelajuan pengumpulan data.

Berikut ialah contoh rangkak tak segerak yang dipermudahkan:

import asyncio
import aiohttp
from bs4 import BeautifulSoup

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def parse(html):
    soup = BeautifulSoup(html, 'lxml')
    # Data extraction and processing
    return data

async def crawl(urls):
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        pages = await asyncio.gather(*tasks)
        results = [await parse(page) for page in pages]
    return results

urls = ['http://example.com', 'http://example.org', 'http://example.net']
results = asyncio.run(crawl(urls))

asyncio.gather() membenarkan pelaksanaan serentak berbilang coroutine, secara drastik mengurangkan masa merangkak secara keseluruhan.

2. Merangkak Diedarkan dengan Scrapy dan ScrapyRT:

Untuk merangkak secara meluas, pendekatan yang diedarkan adalah sangat berfaedah. Scrapy, rangka kerja mengikis web yang berkuasa, digabungkan dengan ScrapyRT, memudahkan rangkak web teragih masa nyata.

Contoh labah-labah Scrapy asas:

import scrapy

class ExampleSpider(scrapy.Spider):
    name = 'example'
    start_urls = ['http://example.com']

    def parse(self, response):
        for item in response.css('div.item'):
            yield {
                'title': item.css('h2::text').get(),
                'link': item.css('a::attr(href)').get(),
                'description': item.css('p::text').get()
            }

        next_page = response.css('a.next-page::attr(href)').get()
        if next_page:
            yield response.follow(next_page, self.parse)

Penyepaduan ScrapyRT melibatkan penyediaan pelayan ScrapyRT dan menghantar permintaan HTTP:

import requests

url = 'http://localhost:9080/crawl.json'
params = {
    'spider_name': 'example',
    'url': 'http://example.com'
}
response = requests.get(url, params=params)
data = response.json()

Ini membolehkan rangkak atas permintaan dan penyepaduan yang lancar dengan sistem lain.

3. Mengendalikan Kandungan yang Dihasilkan JavaScript dengan Selenium:

Banyak tapak web menggunakan JavaScript untuk pemaparan kandungan dinamik. Selenium WebDriver secara berkesan mengautomasikan penyemak imbas, berinteraksi dengan elemen JavaScript.

Contoh penggunaan selenium:

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Chrome()
driver.get("http://example.com")

# Wait for element to load
element = WebDriverWait(driver, 10).until(
    EC.presence_of_element_located((By.ID, "dynamic-content"))
)

# Extract data
data = element.text

driver.quit()

Selenium adalah penting untuk merangkak aplikasi satu halaman atau tapak web dengan interaksi pengguna yang rumit.

4. Menggunakan Proksi dan Putaran IP:

Putaran proksi adalah penting untuk memintas pengehadan kadar dan larangan IP. Ini melibatkan kitaran melalui alamat IP yang berbeza untuk setiap permintaan.

Contoh penggunaan proksi:

import requests
from itertools import cycle

proxies = [
    {'http': 'http://proxy1.com:8080'},
    {'http': 'http://proxy2.com:8080'},
    {'http': 'http://proxy3.com:8080'}
]
proxy_pool = cycle(proxies)

for url in urls:
    proxy = next(proxy_pool)
    try:
        response = requests.get(url, proxies=proxy)
        # Process response
    except:
        # Error handling and proxy removal
        pass

Ini mengagihkan beban dan mengurangkan risiko disekat.

5. Penghuraian HTML yang cekap dengan Pemilih lxml dan CSS:

lxml dengan pemilih CSS menyediakan penghuraian HTML berprestasi tinggi.

Contoh:

from lxml import html
import requests

response = requests.get('http://example.com')
tree = html.fromstring(response.content)

# Extract data using CSS selectors
titles = tree.cssselect('h2.title')
links = tree.cssselect('a.link')

for title, link in zip(titles, links):
    print(title.text_content(), link.get('href'))

Ini jauh lebih pantas daripada BeautifulSoup, terutamanya untuk dokumen HTML yang besar.

Amalan dan Kebolehskalaan Terbaik:

  • Hormati robots.txt: Patuhi peraturan tapak web.
  • Merangkak sopan: Laksanakan kelewatan antara permintaan.
  • Gunakan ejen pengguna yang sesuai: Kenal pasti perangkak anda.
  • Pengendalian ralat yang teguh: Sertakan mekanisme cuba semula.
  • Storan data yang cekap: Gunakan pangkalan data atau format fail yang sesuai.
  • Baris gilir mesej (cth., Saderi): Urus kerja merangkak merentas berbilang mesin.
  • Merangkak sempadan: Urus URL dengan cekap.
  • Pemantauan prestasi: Kesan prestasi perangkak.
  • Penskalaan mendatar: Tambahkan lebih banyak nod merangkak mengikut keperluan.

Pengikisan web yang beretika adalah yang terpenting. Sesuaikan teknik ini dan terokai perpustakaan lain untuk memenuhi keperluan khusus anda. Perpustakaan Python yang luas memperkasakan anda untuk mengendalikan walaupun tugas merangkak web yang paling mencabar.


101 Buku

101 Buku, diasaskan bersama oleh pengarang Aarav Joshi, ialah sebuah syarikat penerbitan dikuasakan AI. Kos penerbitan kami yang rendah—sesetengah buku berharga $4—menjadikan pengetahuan berkualiti boleh diakses oleh semua.

Cari buku kami Kod Bersih Golang di Amazon.

Untuk kemas kini dan diskaun istimewa, cari Aarav Joshi di Amazon.

Ciptaan Kami

Terokai ciptaan kami:

Pusat Pelabur | Pelabur Central Spanish | Pelabur Jerman Tengah | Hidup Pintar | Epos & Gema | Misteri Membingungkan | Hindutva | Pembangunan Elit | Sekolah JS


Kami berada di Sederhana

Tech Koala Insights | Dunia Epok & Gema | Medium Pusat Pelabur | Medium Misteri Membingungkan | Sains & Zaman Sederhana | Hindutva Moden

Atas ialah kandungan terperinci Teknik Merangkak Web Python lanjutan untuk Pengumpulan Data yang Cekap. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial PHP
1488
72
Cara Mengendalikan Pengesahan API di Python Cara Mengendalikan Pengesahan API di Python Jul 13, 2025 am 02:22 AM

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Terangkan pernyataan Python. Terangkan pernyataan Python. Jul 07, 2025 am 12:14 AM

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Apakah Iterator Python? Apakah Iterator Python? Jul 08, 2025 am 02:56 AM

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

Apakah petunjuk jenis python? Apakah petunjuk jenis python? Jul 07, 2025 am 02:55 AM

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Cara Menghidupkan Dua Senarai Sekali Python Cara Menghidupkan Dua Senarai Sekali Python Jul 09, 2025 am 01:13 AM

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Tutorial Python Fastapi Tutorial Python Fastapi Jul 12, 2025 am 02:42 AM

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

Cara Menguji API dengan Python Cara Menguji API dengan Python Jul 12, 2025 am 02:47 AM

Untuk menguji API, anda perlu menggunakan Perpustakaan Permintaan Python. Langkah -langkahnya adalah untuk memasang perpustakaan, menghantar permintaan, mengesahkan respons, menetapkan masa dan cuba semula. Pertama, pasang perpustakaan melalui PipinstallRequests; kemudian gunakan permintaan.get () atau requests.post () dan kaedah lain untuk menghantar permintaan GET atau pos; Kemudian semak respons.status_code dan response.json () untuk memastikan hasil pulangan mematuhi jangkaan; Akhirnya, tambah parameter tamat masa untuk menetapkan masa tamat, dan menggabungkan perpustakaan semula untuk mencapai percubaan automatik untuk meningkatkan kestabilan.

Menyediakan dan menggunakan persekitaran maya Python Menyediakan dan menggunakan persekitaran maya Python Jul 06, 2025 am 02:56 AM

Persekitaran maya boleh mengasingkan kebergantungan projek yang berbeza. Dicipta menggunakan modul Venv Python sendiri, perintah itu adalah python-mvenvenv; Kaedah pengaktifan: Windows menggunakan Env \ Scripts \ Activate, MacOS/Linux menggunakan Sourceenv/Bin/Activate; Pakej pemasangan menggunakan pipinstall, gunakan pipfreeze> keperluan.txt untuk menghasilkan fail keperluan, dan gunakan pipinstall-rrequirements.txt untuk memulihkan persekitaran; Langkah berjaga -jaga termasuk tidak menyerahkan kepada Git, mengaktifkan semula setiap kali terminal baru dibuka, dan pengenalan dan penukaran automatik boleh digunakan oleh IDE.

See all articles