


Membina Pengesah E-mel Dikuasakan AI menggunakan Model Google Gemini
Jan 09, 2025 pm 06:30 PMDi syarikat saya, saya mengusahakan projek yang melibatkan borang pertanyaan pelanggan untuk tapak e-dagang. Kami mempunyai sistem yang disediakan untuk mengesahkan alamat e-mel, tetapi masalah yang lebih besar kekal: cara memastikan mesej yang dihantar oleh orang sebenarnya berkaitan untuk disimpan dan bukan hanya mel sampah. Ini adalah penting untuk mengelak daripada membebankan pasukan sokongan kami dengan e-mel yang tidak berkaitan.
Cabaran teras, dan fokus komponen ini, adalah membangunkan kaedah untuk menilai secara automatik kerelevanan setiap pertanyaan sebelum ia sampai ke peti masuk kami – pada asasnya, penapis spam untuk soalan pelanggan, yang memfokuskan pada hanya menyimpan mesej yang benar-benar relevan.
Percubaan pertama saya untuk menyelesaikan masalah itu agak mudah: Saya menggunakan teknik pengesahan e-mel standard. Ini bermakna menyemak corak e-mel spam biasa dan memastikan alamat e-mel diformat dengan betul. Ia menangkap beberapa spam yang jelas, tetapi ia tidak mudah. E-mel spam pintar dengan mudah memintas semakan mudah ini.
Masalah utama ialah saya hanya melihat alamat, bukan mesej itu sendiri. Untuk benar-benar menyelesaikannya, saya perlu memahami kandungan e-mel, di mana saya mula menggunakan AI.
Dapatkan kunci api anda dari sini - AISTUDIO
Video demo - Pautan video
Membina Pengesah Dikuasakan AI menggunakan GEMINI 1.5 FLASH MODEL
Inti penyelesaian saya adalah sangat mudah, tetapi berkesan.
- Penghadan Kadar: Ia bermula dengan mencegah penyalahgunaan, sesuatu yang saya tangani menggunakan pengehadan kadar. Pada asasnya, sistem kini menjejaki berapa banyak mesej yang diterima daripada satu alamat e-mel dalam tempoh masa yang singkat (lima minit, dalam kes ini).
- Membuat Prompt: Saya mencipta set arahan khusus – "prompt" - untuk memberitahu AI dengan tepat apa yang perlu dicari dalam setiap e-mel. Gesaan ini termasuk nama pengirim, alamat e-mel dan mesej itu sendiri. Kemudian, saya bertanya kepada AI beberapa soalan penting:
Analyze this email: Name: [Sender's Name] Email: [Sender's Email] Message: [Email Message] Is this message relevant to [domain/topic]? Does the email address look legitimate? Is the inquiry specific and reasonable? Return JSON: {"is_valid": "Yes/No", "reason": "[Explanation]"}
Berinteraksi dengan AI: Saya menggunakan model AI yang popular(Model Flash Gemini 1.5) (anda boleh menyesuaikannya dengan orang lain dengan mudah), menghantar gesaan dan menerima respons JSON. Respons ini mengandungi dua maklumat penting: is_valid (Ya atau Tidak) dan sebab (penjelasan tentang keputusan AI).
Pengendalian Ralat: Perkara yang tidak dijangka berlaku! Kod saya termasuk pengendalian ralat yang mantap. Jika panggilan API AI gagal, atau tindak balas AI tidak dijangka, sistem akan mengendalikan ralat dengan anggun dan menghalang ranap. Ia mengembalikan mesej ralat dan bukannya gagal secara senyap.
Menyatukan Semuanya: Sistem terakhir adalah elegan dalam kesederhanaannya: E-mel masuk -> Semakan mengehadkan kadar -> Pengesahan AI -> Keputusan (sah/tidak sah). Pendekatan ini jauh lebih tepat daripada pengesahan e-mel mudah sahaja.
Kod Pelaksanaan
Analyze this email: Name: [Sender's Name] Email: [Sender's Email] Message: [Email Message] Is this message relevant to [domain/topic]? Does the email address look legitimate? Is the inquiry specific and reasonable? Return JSON: {"is_valid": "Yes/No", "reason": "[Explanation]"}
Ingat untuk menggantikan ruang letak:
[ANDA_AI_API_ENDPOINT] dengan titik akhir sebenar API AI anda.
Fungsi getApiKey() dengan kaedah anda untuk mengakses kunci API dengan selamat.
Fungsi extractAIResponse() dengan kod khusus untuk menghuraikan respons daripada model AI pilihan anda. Contoh yang diberikan adalah ilustrasi dan mungkin tidak berfungsi secara langsung dengan respons model AI anda.
Kod di atas hanyalah pendekatan asas untuk mengurangkan e-mel spam yang perlu diperhalusi yang memenuhi keperluan anda.
Terima Kasih?
Atas ialah kandungan terperinci Membina Pengesah E-mel Dikuasakan AI menggunakan Model Google Gemini. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Terdapat tiga cara biasa untuk memulakan permintaan HTTP dalam node.js: Gunakan modul terbina dalam, axios, dan nod-fetch. 1. Gunakan modul HTTP/HTTPS terbina dalam tanpa kebergantungan, yang sesuai untuk senario asas, tetapi memerlukan pemprosesan manual jahitan data dan pemantauan ralat, seperti menggunakan https.get () untuk mendapatkan data atau menghantar permintaan pos melalui .write (); 2.AXIOS adalah perpustakaan pihak ketiga berdasarkan janji. Ia mempunyai sintaks ringkas dan fungsi yang kuat, menyokong async/menunggu, penukaran JSON automatik, pemintas, dan lain -lain. Adalah disyorkan untuk memudahkan operasi permintaan tak segerak; 3.Node-Fetch menyediakan gaya yang serupa dengan pengambilan penyemak imbas, berdasarkan janji dan sintaks mudah

Jenis data JavaScript dibahagikan kepada jenis primitif dan jenis rujukan. Jenis primitif termasuk rentetan, nombor, boolean, null, undefined, dan simbol. Nilai -nilai tidak berubah dan salinan disalin apabila memberikan nilai, jadi mereka tidak mempengaruhi satu sama lain; Jenis rujukan seperti objek, tatasusunan dan fungsi menyimpan alamat memori, dan pembolehubah menunjuk objek yang sama akan mempengaruhi satu sama lain. Typeof dan Instanceof boleh digunakan untuk menentukan jenis, tetapi memberi perhatian kepada isu -isu sejarah TypeOfNull. Memahami kedua -dua jenis perbezaan ini dapat membantu menulis kod yang lebih stabil dan boleh dipercayai.

Helo, pemaju JavaScript! Selamat datang ke berita JavaScript minggu ini! Minggu ini kami akan memberi tumpuan kepada: Pertikaian tanda dagangan Oracle dengan Deno, objek masa JavaScript baru disokong oleh pelayar, kemas kini Google Chrome, dan beberapa alat pemaju yang kuat. Mari mulakan! Pertikaian tanda dagangan Oracle dengan percubaan Deno Oracle untuk mendaftarkan tanda dagangan "JavaScript" telah menyebabkan kontroversi. Ryan Dahl, pencipta Node.js dan Deno, telah memfailkan petisyen untuk membatalkan tanda dagangan, dan dia percaya bahawa JavaScript adalah standard terbuka dan tidak boleh digunakan oleh Oracle

CACHEAPI adalah alat yang disediakan oleh penyemak imbas kepada permintaan rangkaian cache, yang sering digunakan bersempena dengan ServiceWorker untuk meningkatkan prestasi laman web dan pengalaman luar talian. 1. Ia membolehkan pemaju menyimpan sumber secara manual seperti skrip, helaian gaya, gambar, dan lain -lain; 2. Ia boleh memadankan tindak balas cache mengikut permintaan; 3. Ia menyokong memotong cache tertentu atau membersihkan seluruh cache; 4. Ia boleh melaksanakan keutamaan cache atau strategi keutamaan rangkaian melalui perkhidmatan pekerja yang mendengar acara mengambil; 5. Ia sering digunakan untuk sokongan luar talian, mempercepat kelajuan akses berulang, sumber utama dan kandungan kemas kini latar belakang; 6. Apabila menggunakannya, anda perlu memberi perhatian kepada kawalan versi cache, sekatan penyimpanan dan perbezaan dari mekanisme caching HTTP.

Janji adalah mekanisme teras untuk mengendalikan operasi tak segerak dalam JavaScript. Memahami panggilan rantaian, pengendalian ralat dan gabungan adalah kunci untuk menguasai aplikasi mereka. 1. Panggilan rantai mengembalikan janji baru melalui .then () untuk merealisasikan persamaan proses tak segerak. Setiap .then () menerima hasil sebelumnya dan boleh mengembalikan nilai atau janji; 2. Pengendalian ralat harus menggunakan .catch () untuk menangkap pengecualian untuk mengelakkan kegagalan senyap, dan boleh mengembalikan nilai lalai dalam tangkapan untuk meneruskan proses; 3. Gabungan seperti janji.all () (berjaya hanya berjaya selepas semua kejayaan), janji.race () (penyempurnaan pertama dikembalikan) dan janji.allsettled () (menunggu semua penyelesaian)

Kaedah terbina dalam JavaScript seperti .map (), .filter () dan .reduce () dapat memudahkan pemprosesan data; 1) .map () digunakan untuk menukar elemen satu hingga satu untuk menghasilkan tatasusunan baru; 2) .filter () digunakan untuk menapis elemen mengikut keadaan; 3) .reduce () digunakan untuk mengagregatkan data sebagai nilai tunggal; Penyalahgunaan harus dielakkan apabila digunakan, mengakibatkan kesan sampingan atau masalah prestasi.

Gelung acara JavaScript menguruskan operasi tak segerak dengan menyelaraskan susunan panggilan, webapis, dan barisan tugas. 1. Stack panggilan melaksanakan kod segerak, dan ketika menghadapi tugas -tugas yang tidak segerak, ia diserahkan kepada Webapi untuk diproses; 2. Selepas Webapi melengkapkan tugas di latar belakang, ia meletakkan panggil balik ke dalam barisan yang sama (tugas makro atau tugas mikro); 3. Loop acara memeriksa sama ada timbunan panggilan kosong. Jika ia kosong, panggilan balik diambil dari barisan dan ditolak ke dalam tumpukan panggilan untuk pelaksanaan; 4. Tugas -tugas mikro (seperti janji. 5. Memahami gelung acara membantu mengelakkan menyekat benang utama dan mengoptimumkan pesanan pelaksanaan kod.

Gelembung peristiwa menyebarkan dari elemen sasaran ke luar ke nod nenek moyang, sementara penangkapan peristiwa menyebarkan dari lapisan luar ke dalam ke elemen sasaran. 1. Bubbles Acara: Selepas mengklik elemen kanak -kanak, acara itu mencetuskan pendengar elemen induk ke atas. Sebagai contoh, selepas mengklik butang, ia mengeluarkan anak -anak terlebih dahulu, dan kemudian ParentClicked. 2. Tangkap Acara: Tetapkan parameter ketiga menjadi benar, supaya pendengar dilaksanakan di peringkat penangkapan, seperti mencetuskan pendengar penangkapan elemen induk sebelum mengklik butang. 3. Penggunaan praktikal termasuk pengurusan bersatu peristiwa elemen kanak -kanak, pemprosesan pemintasan dan pengoptimuman prestasi. 4. Aliran acara DOM dibahagikan kepada tiga peringkat: menangkap, sasaran dan gelembung, dan pendengar lalai dilaksanakan di peringkat gelembung.
