亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Rumah pembangunan bahagian belakang Tutorial Python Tutorial Terperinci: Merangkak Folder Repositori GitHub Tanpa API

Tutorial Terperinci: Merangkak Folder Repositori GitHub Tanpa API

Dec 16, 2024 am 06:28 AM

Detailed Tutorial: Crawling GitHub Repository Folders Without API

Tutorial Sangat Terperinci: Merangkak Folder Repositori GitHub Tanpa API

Tutorial ultra-perincian ini, yang dikarang oleh Shpetim Haxhiu, membimbing anda merangkak folder repositori GitHub secara pemprograman tanpa bergantung pada API GitHub. Ia merangkumi segala-galanya daripada memahami struktur sehingga menyediakan pelaksanaan rekursif yang teguh dengan peningkatan.


1. Persediaan dan Pemasangan

Sebelum anda bermula, pastikan anda mempunyai:

  1. Python: Versi 3.7 ke atas dipasang.
  2. Perpustakaan: Permintaan pemasangan dan BeautifulSoup.
   pip install requests beautifulsoup4
  1. Editor: Mana-mana IDE yang disokong Python, seperti VS Code atau PyCharm.

2. Menganalisis Struktur HTML GitHub

Untuk mengikis folder GitHub, anda perlu memahami struktur HTML halaman repositori. Pada halaman repositori GitHub:

  • Folder dipautkan dengan laluan seperti /tree//.
  • Fail dipautkan dengan laluan seperti /blob//.

Setiap item (folder atau fail) berada di dalam

dengan atribut role="rowheader" dan mengandungi tag. Contohnya:

<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>

3. Melaksanakan Pengikis

3.1. Fungsi Merangkak Berulang

Skrip akan mengikis folder secara rekursif dan mencetak strukturnya. Untuk mengehadkan kedalaman rekursi dan mengelakkan beban yang tidak perlu, kami akan menggunakan parameter kedalaman.

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)

4. Ciri-ciri Diterangkan

  1. Pengepala untuk Permintaan: Menggunakan rentetan Ejen Pengguna untuk meniru penyemak imbas dan mengelak daripada menyekat.
  2. Merangkak Rekursif:
    • Mengesan folder (/tree/) dan memasukkannya secara rekursif.
    • Menyenaraikan fail (/blob/) tanpa memasukkan lebih jauh.
  3. Inden: Mencerminkan hierarki folder dalam output.
  4. Penghadan Kedalaman: Menghalang pengulangan yang berlebihan dengan menetapkan kedalaman maksimum (kedalaman_maks).

5. Penambahbaikan

Peningkatan ini direka untuk meningkatkan kefungsian dan kebolehpercayaan perangkak. Mereka menangani cabaran biasa seperti mengeksport hasil, mengendalikan ralat dan mengelakkan had kadar, memastikan alat itu cekap dan mesra pengguna.

5.1. Mengeksport Hasil

Simpan output ke fail JSON berstruktur untuk penggunaan yang lebih mudah.

   pip install requests beautifulsoup4

5.2. Ralat Pengendalian

Tambahkan pengendalian ralat yang mantap untuk ralat rangkaian dan perubahan HTML yang tidak dijangka:

<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>

5.3. Mengehadkan Kadar

Untuk mengelak daripada dihadkan kadar oleh GitHub, perkenalkan kelewatan:

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)

6. Pertimbangan Etika

Dikarang oleh Shpetim Haxhiu, pakar dalam automasi perisian dan pengaturcaraan beretika, bahagian ini memastikan pematuhan kepada amalan terbaik semasa menggunakan perangkak GitHub.

  • Pematuhan: Patuhi Syarat Perkhidmatan GitHub.
  • Minimumkan Muatan: Hormati pelayan GitHub dengan mengehadkan permintaan dan menambah kelewatan.
  • Kebenaran: Dapatkan kebenaran untuk merangkak secara meluas repositori peribadi.

7. Kod Lengkap

Berikut ialah skrip disatukan dengan semua ciri disertakan:

import json

def crawl_to_json(url, depth=0, max_depth=3):
    """Crawls and saves results as JSON."""
    result = {}

    if depth > max_depth:
        return result

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url}")
        return result

    soup = BeautifulSoup(response.text, 'html.parser')
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            result[item_name] = crawl_to_json(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            result[item_name] = "file"

    return result

if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    structure = crawl_to_json(repo_url)

    with open("output.json", "w") as file:
        json.dump(structure, file, indent=2)

    print("Repository structure saved to output.json")

Dengan mengikuti panduan terperinci ini, anda boleh membina perangkak folder GitHub yang mantap. Alat ini boleh disesuaikan untuk pelbagai keperluan sambil memastikan pematuhan etika.


Sila tinggalkan soalan di bahagian komen! Juga, jangan lupa untuk berhubung dengan saya:

  • E-mel: shpetim.h@gmail.com
  • LinkedIn: linkedin.com/in/shpetimhaxhiu
  • GitHub: github.com/shpetimhaxhiu

Atas ialah kandungan terperinci Tutorial Terperinci: Merangkak Folder Repositori GitHub Tanpa API. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial PHP
1488
72
Polimorfisme dalam kelas python Polimorfisme dalam kelas python Jul 05, 2025 am 02:58 AM

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Terangkan penjana python dan iterators. Terangkan penjana python dan iterators. Jul 05, 2025 am 02:55 AM

Iterator adalah objek yang melaksanakan kaedah __iter __ () dan __Next __ (). Penjana adalah versi Iterator yang dipermudahkan, yang secara automatik melaksanakan kaedah ini melalui kata kunci hasil. 1. Iterator mengembalikan elemen setiap kali dia memanggil seterusnya () dan melemparkan pengecualian berhenti apabila tidak ada lagi elemen. 2. Penjana menggunakan definisi fungsi untuk menghasilkan data atas permintaan, menjimatkan memori dan menyokong urutan tak terhingga. 3. Menggunakan Iterator apabila memproses set sedia ada, gunakan penjana apabila menghasilkan data besar secara dinamik atau penilaian malas, seperti garis pemuatan mengikut baris apabila membaca fail besar. NOTA: Objek yang boleh diperolehi seperti senarai bukanlah pengaliran. Mereka perlu dicipta semula selepas pemalar itu sampai ke penghujungnya, dan penjana hanya boleh melintasi sekali.

Cara Mengendalikan Pengesahan API di Python Cara Mengendalikan Pengesahan API di Python Jul 13, 2025 am 02:22 AM

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Terangkan pernyataan Python. Terangkan pernyataan Python. Jul 07, 2025 am 12:14 AM

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Cara Menghidupkan Dua Senarai Sekali Python Cara Menghidupkan Dua Senarai Sekali Python Jul 09, 2025 am 01:13 AM

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Apakah Iterator Python? Apakah Iterator Python? Jul 08, 2025 am 02:56 AM

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

Apakah petunjuk jenis python? Apakah petunjuk jenis python? Jul 07, 2025 am 02:55 AM

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Tutorial Python Fastapi Tutorial Python Fastapi Jul 12, 2025 am 02:42 AM

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

See all articles