Beli Saya Kopi?
*Siaran saya menerangkan MNIST, EMNIST, QMNIST, ETLCDB, Kuzushiji dan Moving MNIST.
(1) Fesyen-MNIST(2017):
- mempunyai 70,000 imej fesyen setiap satu disambungkan ke label daripada 10 kelas dengan 10 kelas:
*Memo:
- 60,000 untuk kereta api dan 10,000 untuk ujian.
- Setiap imej ialah 28x28 piksel.
- ialah FashionMNIST() dalam PyTorch.
(2) Caltech 101(2003):
- mempunyai 8,677 imej objek setiap satu disambungkan ke label daripada 101 kategori(kelas). *Setiap imej adalah kira-kira 300x200 piksel.
- ialah Caltech101() dalam PyTorch.
(3) Caltech 256(2007):
- mempunyai 30,607 imej objek yang disambungkan kepada label daripada 257 kategori(kelas). *Sebenarnya, ia mempunyai 257 kategori(kelas) berbanding nama Caltech 256.
- ialah Caltech256() dalam PyTorch.
(4) CelebA(Atribut CelebFaces Berskala Besar)(2015):
- mempunyai 202,599 imej wajah selebriti setiap satu disambungkan kepada 40 atribut:
*Memo:
- 162,770 untuk kereta api, 19,867 untuk pengesahan dan 19,962 untuk ujian.
- Muat turun terus dari Google Drive adalah disyorkan kerana memuat turunnya dengan API Google Drive daripada Google Drive adalah terlalu sesak.
- ialah CelebA() dalam PyTorch.
(5) CIFAR-10(Canadian Institute For Advanced Research-10)(2009):
- mempunyai 60,000 imej kenderaan dan haiwan setiap satu disambungkan ke label daripada 10 kelas:
*Memo:
- 50,000 untuk kereta api dan 10,000 untuk ujian.
- Setiap imej ialah 32x32 piksel.
- ialah CIFAR10() dalam PyTorch.
(6) CIFAR-100(Institut Kanada Untuk Penyelidikan Lanjutan-100)(2009):
- mempunyai 60,000 imej objek setiap satu disambungkan ke label daripada 100 kelas:
*Memo:
- 50,000 untuk kereta api dan 10,000 untuk ujian.
- Setiap imej ialah 32x32 piksel.
- ialah CIFAR100() dalam PyTorch.
Atas ialah kandungan terperinci Set Data untuk Penglihatan Komputer (2). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

Untuk menguji API, anda perlu menggunakan Perpustakaan Permintaan Python. Langkah -langkahnya adalah untuk memasang perpustakaan, menghantar permintaan, mengesahkan respons, menetapkan masa dan cuba semula. Pertama, pasang perpustakaan melalui PipinstallRequests; kemudian gunakan permintaan.get () atau requests.post () dan kaedah lain untuk menghantar permintaan GET atau pos; Kemudian semak respons.status_code dan response.json () untuk memastikan hasil pulangan mematuhi jangkaan; Akhirnya, tambah parameter tamat masa untuk menetapkan masa tamat, dan menggabungkan perpustakaan semula untuk mencapai percubaan automatik untuk meningkatkan kestabilan.

Persekitaran maya boleh mengasingkan kebergantungan projek yang berbeza. Dicipta menggunakan modul Venv Python sendiri, perintah itu adalah python-mvenvenv; Kaedah pengaktifan: Windows menggunakan Env \ Scripts \ Activate, MacOS/Linux menggunakan Sourceenv/Bin/Activate; Pakej pemasangan menggunakan pipinstall, gunakan pipfreeze> keperluan.txt untuk menghasilkan fail keperluan, dan gunakan pipinstall-rrequirements.txt untuk memulihkan persekitaran; Langkah berjaga -jaga termasuk tidak menyerahkan kepada Git, mengaktifkan semula setiap kali terminal baru dibuka, dan pengenalan dan penukaran automatik boleh digunakan oleh IDE.
