


Membina Sistem Ejen Perusahaan: Reka Bentuk dan Pengoptimuman Komponen Teras
Nov 23, 2024 pm 01:46 PMpengenalan
Membina ejen AI gred perusahaan memerlukan pertimbangan yang teliti terhadap reka bentuk komponen, seni bina sistem dan amalan kejuruteraan. Artikel ini meneroka komponen utama dan amalan terbaik untuk membina sistem ejen yang teguh dan berskala.
1. Kejuruteraan Templat Prompt
1.1 Corak Reka Bentuk Templat
from typing import Protocol, Dict from jinja2 import Template class PromptTemplate(Protocol): def render(self, **kwargs) -> str: pass class JinjaPromptTemplate: def __init__(self, template_string: str): self.template = Template(template_string) def render(self, **kwargs) -> str: return self.template.render(**kwargs) class PromptLibrary: def __init__(self): self.templates: Dict[str, PromptTemplate] = {} def register_template(self, name: str, template: PromptTemplate): self.templates[name] = template def get_template(self, name: str) -> PromptTemplate: return self.templates[name]
1.2 Kawalan dan Pengujian Versi
class PromptVersion: def __init__(self, version: str, template: str, metadata: dict): self.version = version self.template = template self.metadata = metadata self.test_cases = [] def add_test_case(self, inputs: dict, expected_output: str): self.test_cases.append((inputs, expected_output)) def validate(self) -> bool: template = JinjaPromptTemplate(self.template) for inputs, expected in self.test_cases: result = template.render(**inputs) if not self._validate_output(result, expected): return False return True
2. Sistem Ingatan Hierarki
2.1 Seni Bina Ingatan
from typing import Any, List from datetime import datetime class MemoryEntry: def __init__(self, content: Any, importance: float): self.content = content self.importance = importance self.timestamp = datetime.now() self.access_count = 0 class MemoryLayer: def __init__(self, capacity: int): self.capacity = capacity self.memories: List[MemoryEntry] = [] def add(self, entry: MemoryEntry): if len(self.memories) >= self.capacity: self._evict() self.memories.append(entry) def _evict(self): # Implement memory eviction strategy self.memories.sort(key=lambda x: x.importance * x.access_count) self.memories.pop(0) class HierarchicalMemory: def __init__(self): self.working_memory = MemoryLayer(capacity=5) self.short_term = MemoryLayer(capacity=50) self.long_term = MemoryLayer(capacity=1000) def store(self, content: Any, importance: float): entry = MemoryEntry(content, importance) if importance > 0.8: self.working_memory.add(entry) elif importance > 0.5: self.short_term.add(entry) else: self.long_term.add(entry)
2.2 Mendapatkan Ingatan dan Pengindeksan
from typing import List, Tuple import numpy as np from sklearn.metrics.pairwise import cosine_similarity class MemoryIndex: def __init__(self, embedding_model): self.embedding_model = embedding_model self.embeddings = [] self.memories = [] def add(self, memory: MemoryEntry): embedding = self.embedding_model.embed(memory.content) self.embeddings.append(embedding) self.memories.append(memory) def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]: query_embedding = self.embedding_model.embed(query) similarities = cosine_similarity( [query_embedding], self.embeddings )[0] top_k_indices = np.argsort(similarities)[-k:] return [ (self.memories[i], similarities[i]) for i in top_k_indices ]
3. Rantaian Penaakulan Boleh Diperhatikan
3.1 Struktur Rantaian
from typing import List, Optional from dataclasses import dataclass import uuid @dataclass class ThoughtNode: content: str confidence: float supporting_evidence: List[str] class ReasoningChain: def __init__(self): self.chain_id = str(uuid.uuid4()) self.nodes: List[ThoughtNode] = [] self.metadata = {} def add_thought(self, thought: ThoughtNode): self.nodes.append(thought) def get_path(self) -> List[str]: return [node.content for node in self.nodes] def get_confidence(self) -> float: if not self.nodes: return 0.0 return sum(n.confidence for n in self.nodes) / len(self.nodes)
3.2 Pemantauan dan Analisis Rantaian
import logging from opentelemetry import trace from prometheus_client import Histogram reasoning_time = Histogram( 'reasoning_chain_duration_seconds', 'Time spent in reasoning chain' ) class ChainMonitor: def __init__(self): self.tracer = trace.get_tracer(__name__) def monitor_chain(self, chain: ReasoningChain): with self.tracer.start_as_current_span("reasoning_chain") as span: span.set_attribute("chain_id", chain.chain_id) with reasoning_time.time(): for node in chain.nodes: with self.tracer.start_span("thought") as thought_span: thought_span.set_attribute( "confidence", node.confidence ) logging.info( f"Thought: {node.content} " f"(confidence: {node.confidence})" )
4. Penyahgandingan dan Penggunaan Semula Komponen
4.1 Reka Bentuk Antaramuka
from abc import ABC, abstractmethod from typing import Generic, TypeVar T = TypeVar('T') class Component(ABC, Generic[T]): @abstractmethod def process(self, input_data: T) -> T: pass class Pipeline: def __init__(self): self.components: List[Component] = [] def add_component(self, component: Component): self.components.append(component) def process(self, input_data: Any) -> Any: result = input_data for component in self.components: result = component.process(result) return result
4.2 Pendaftaran Komponen
class ComponentRegistry: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance.components = {} return cls._instance def register(self, name: str, component: Component): self.components[name] = component def get(self, name: str) -> Optional[Component]: return self.components.get(name) def create_pipeline(self, component_names: List[str]) -> Pipeline: pipeline = Pipeline() for name in component_names: component = self.get(name) if component: pipeline.add_component(component) return pipeline
5. Pemantauan dan Pengoptimuman Prestasi
5.1 Metrik Prestasi
from dataclasses import dataclass from typing import Dict import time @dataclass class PerformanceMetrics: latency: float memory_usage: float token_count: int success_rate: float class PerformanceMonitor: def __init__(self): self.metrics: Dict[str, List[PerformanceMetrics]] = {} def record_operation( self, operation_name: str, metrics: PerformanceMetrics ): if operation_name not in self.metrics: self.metrics[operation_name] = [] self.metrics[operation_name].append(metrics) def get_average_metrics( self, operation_name: str ) -> Optional[PerformanceMetrics]: if operation_name not in self.metrics: return None metrics_list = self.metrics[operation_name] return PerformanceMetrics( latency=sum(m.latency for m in metrics_list) / len(metrics_list), memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list), token_count=sum(m.token_count for m in metrics_list) / len(metrics_list), success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list) )
5.2 Strategi Pengoptimuman
class PerformanceOptimizer: def __init__(self, monitor: PerformanceMonitor): self.monitor = monitor self.thresholds = { 'latency': 1.0, # seconds 'memory_usage': 512, # MB 'token_count': 1000, 'success_rate': 0.95 } def analyze_performance(self, operation_name: str) -> List[str]: metrics = self.monitor.get_average_metrics(operation_name) if not metrics: return [] recommendations = [] if metrics.latency > self.thresholds['latency']: recommendations.append( "Consider implementing caching or parallel processing" ) if metrics.memory_usage > self.thresholds['memory_usage']: recommendations.append( "Optimize memory usage through batch processing" ) if metrics.token_count > self.thresholds['token_count']: recommendations.append( "Implement prompt optimization to reduce token usage" ) if metrics.success_rate < self.thresholds['success_rate']: recommendations.append( "Review error handling and implement retry mechanisms" ) return recommendations
Kesimpulan
Membina sistem Ejen gred perusahaan memerlukan perhatian yang teliti terhadap:
- Pengurusan segera berstruktur dan kawalan versi
- Sistem memori yang cekap dan boleh skala
- Proses penaakulan yang boleh diperhatikan dan boleh dikesan
- Reka bentuk komponen modular dan boleh guna semula
- Pemantauan dan pengoptimuman prestasi yang komprehensif
Atas ialah kandungan terperinci Membina Sistem Ejen Perusahaan: Reka Bentuk dan Pengoptimuman Komponen Teras. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Iterator adalah objek yang melaksanakan kaedah __iter __ () dan __Next __ (). Penjana adalah versi Iterator yang dipermudahkan, yang secara automatik melaksanakan kaedah ini melalui kata kunci hasil. 1. Iterator mengembalikan elemen setiap kali dia memanggil seterusnya () dan melemparkan pengecualian berhenti apabila tidak ada lagi elemen. 2. Penjana menggunakan definisi fungsi untuk menghasilkan data atas permintaan, menjimatkan memori dan menyokong urutan tak terhingga. 3. Menggunakan Iterator apabila memproses set sedia ada, gunakan penjana apabila menghasilkan data besar secara dinamik atau penilaian malas, seperti garis pemuatan mengikut baris apabila membaca fail besar. NOTA: Objek yang boleh diperolehi seperti senarai bukanlah pengaliran. Mereka perlu dicipta semula selepas pemalar itu sampai ke penghujungnya, dan penjana hanya boleh melintasi sekali.

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.
