亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Jadual Kandungan
Scatter Plot with Different Colors for Categorical Levels
Using Matplotlib
Using Seaborn
Using pandas.groupby & pandas.DataFrame.plot
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk Mencipta Plot Taburan dengan Warna Berbeza untuk Tahap Kategori dalam Matplotlib, Seaborn dan Panda?

Bagaimana untuk Mencipta Plot Taburan dengan Warna Berbeza untuk Tahap Kategori dalam Matplotlib, Seaborn dan Panda?

Oct 17, 2024 pm 04:34 PM

How to Create a Scatter Plot with Different Colors for Categorical Levels in Matplotlib, Seaborn, and Pandas?

Scatter Plot with Different Colors for Categorical Levels

Using Matplotlib

To create a scatter plot where different categorical levels are represented by different colors using Matplotlib, follow these steps:

  1. Import Matplotlib and the data frame you want to plot.
  2. Define a dictionary that maps the categorical levels to plotting colors.
  3. Use plt.scatter, passing in the x and y values and the c argument to specify the colors.
<code class="python">import matplotlib.pyplot as plt
import pandas as pd

colors = {'D':'tab:blue', 'E':'tab:orange', 'F':'tab:green', 'G':'tab:red', 'H':'tab:purple', 'I':'tab:brown', 'J':'tab:pink'}

df.scatter(df['carat'], df['price'], c=df['color'].map(colors))

plt.show()</code>

Using Seaborn

Seaborn is a wrapper around Matplotlib that provides a more user-friendly interface. To create a scatter plot with different colors for categorical levels using Seaborn, follow these steps:

  1. Import Seaborn and the data frame you want to plot.
  2. Use seaborn.scatterplot, passing in the x and y values and the hue parameter to specify the categorical level.
<code class="python">import seaborn as sns

sns.scatterplot(x='carat', y='price', data=df, hue='color')

plt.show()</code>

Using pandas.groupby & pandas.DataFrame.plot

You can also use pandas.groupby and pandas.DataFrame.plot to create a scatter plot with different colors for categorical levels. This method requires more manual work, but it gives you more control over the plot's appearance.

  1. Import pandas and the data frame you want to plot.
  2. Group the data frame by the categorical level.
  3. Iterate over the groups and plot each one with a different color.
<code class="python">import pandas as pd

fig, ax = plt.subplots(figsize=(6, 6))

grouped = df.groupby('color')
for key, group in grouped:
    group.plot(ax=ax, kind='scatter', x='carat', y='price', label=key, color=colors[key])

plt.show()</code>

Atas ialah kandungan terperinci Bagaimana untuk Mencipta Plot Taburan dengan Warna Berbeza untuk Tahap Kategori dalam Matplotlib, Seaborn dan Panda?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial PHP
1488
72
Cara Mengendalikan Pengesahan API di Python Cara Mengendalikan Pengesahan API di Python Jul 13, 2025 am 02:22 AM

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Terangkan pernyataan Python. Terangkan pernyataan Python. Jul 07, 2025 am 12:14 AM

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Apakah Iterator Python? Apakah Iterator Python? Jul 08, 2025 am 02:56 AM

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

Apakah petunjuk jenis python? Apakah petunjuk jenis python? Jul 07, 2025 am 02:55 AM

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Cara Menghidupkan Dua Senarai Sekali Python Cara Menghidupkan Dua Senarai Sekali Python Jul 09, 2025 am 01:13 AM

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Tutorial Python Fastapi Tutorial Python Fastapi Jul 12, 2025 am 02:42 AM

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

Cara Menguji API dengan Python Cara Menguji API dengan Python Jul 12, 2025 am 02:47 AM

Untuk menguji API, anda perlu menggunakan Perpustakaan Permintaan Python. Langkah -langkahnya adalah untuk memasang perpustakaan, menghantar permintaan, mengesahkan respons, menetapkan masa dan cuba semula. Pertama, pasang perpustakaan melalui PipinstallRequests; kemudian gunakan permintaan.get () atau requests.post () dan kaedah lain untuk menghantar permintaan GET atau pos; Kemudian semak respons.status_code dan response.json () untuk memastikan hasil pulangan mematuhi jangkaan; Akhirnya, tambah parameter tamat masa untuk menetapkan masa tamat, dan menggabungkan perpustakaan semula untuk mencapai percubaan automatik untuk meningkatkan kestabilan.

Menyediakan dan menggunakan persekitaran maya Python Menyediakan dan menggunakan persekitaran maya Python Jul 06, 2025 am 02:56 AM

Persekitaran maya boleh mengasingkan kebergantungan projek yang berbeza. Dicipta menggunakan modul Venv Python sendiri, perintah itu adalah python-mvenvenv; Kaedah pengaktifan: Windows menggunakan Env \ Scripts \ Activate, MacOS/Linux menggunakan Sourceenv/Bin/Activate; Pakej pemasangan menggunakan pipinstall, gunakan pipfreeze> keperluan.txt untuk menghasilkan fail keperluan, dan gunakan pipinstall-rrequirements.txt untuk memulihkan persekitaran; Langkah berjaga -jaga termasuk tidak menyerahkan kepada Git, mengaktifkan semula setiap kali terminal baru dibuka, dan pengenalan dan penukaran automatik boleh digunakan oleh IDE.

See all articles