??
??? ?? ? ??? ??? ??? ??? ???? ?? AI ??? ???? ?? ??? ? ????. AI ??? ??? ??? ?? ???? ?? ??? ??? ????. AI ??? ????? ?? AI ? ??? ?????? ?? ??? ????? ???? ??? ??? ???????. ? ??? ?? ???? ???? ?? ??? ?? ? ? ????? ?? ?? ???? ??? ? ????? ???? ???? ?????.
?? ????? : 2024 ? ?????? 14 ?? ??? AI ???
??
- AI ??? ?? ??? ?? ??? ? ????? ?????.
- ???? ???? ?? ???? ? ?? ??? ??? ?? ????.
- AI ??? ?? ???? ? ??? ?? ??? ?? ????.
??
- ?? ?? ??
- AI? ?? ??
- ?? ??
- ? ??
- ??? ??
- ?? ??? ????
- ?? ??
- ??? ??
- ? ?? ??
- ?? ?? ??
- ?? ?? ??
- AI ??? ?? ? ????
- ?? ?? ??
?? ?? ??
AI? ??? ?? ????
AI ??? ?? AI? ?? ??? ??? ???????. ? ???? ???? ??? ?? ????? ??? ???? AI? ?? ? ??? ???? ?? ???? ??? ? ? ??? ?????.
?? ??? ????, ? ????? ??? ?? ??????. AI? ??? ?? ??? ??? ????? ??? ?? ? ??? ???? ????? ??? ???? ?? ??? ? ?????. ? ?? ?? ?? ????? ?? ??? ?? ?? ??? ??? ??? ??? ??? ?? ??? ?? ??? ??? ? ???????.
?? AI? ?? AI? ???? ??????
?? AI (??? ?? ???? ??? ?? ?? ???)? ?? AI (?? ??? ?? ??)? ??? ???? ?? ?????. ?? AI ?? ?? ?? ??? ??? ??? ??????. ?? ?? ??? ?? ??? ?? ??? ?? ?? ??? ?? ?? ?? ??? ??? ?? ??? ???? ??????.
AI? ?? ????? ?? ????
??, ??????, ?? ? ??? ??? ??? ???? AI? ??? ?? ??????. AI? ?? ??? ??? ??? ??? ????? ??? ?? ? ???????. ? ??? ??? AI? ?? ?? ????? ?? ? ?? ??? ?? ??? ?????.
AI ??? ?? ? ?? ??? ????. ?? ??, ?? ?? ?? ??, AI ???? ?? ? ???? AI ??? ???? ?? ??? ?? ??????. ???? ??? ??? ??? ?? ??? ?? ? ? ?? ??? AI ??? ??? ?? ??? ??? ?? ??????.
?? ????? ?? ??? ??????
?????, ?? ??, ?? ?? ??, ???, ?? ? ???? ?? ??? ??? ?? AI ???? ? ??? ?????????. ?? ?? ???? ??? ? ??? ??? ? ?? ??? ?? ????? ??? ???? ?? ?????.
?? ???? ???? AI ???? ?? ? ???? ???? ?? ???? ?? ???? AI ?? ? ??? ?? ??? ????? ??? ??????.
AI? ?? ??
??? ?? AI ????? ??? ????? ?? AI ??? ?? ???? ?? ???? ?? ??????. ?? ????? ?? ??? ????? ???? ??? ??? ???? ????? ???? ??? ???? ??? ?? ? ????.
??? ?? : ??? ??? ??? ?? ??
?? ?? ? ??
AI? ?? ?? ? ??? ???????. ??? ?? ?? ?? ?? ??, ?? ???? ???? ? ?? ? ??? ??? ???? ??? ?? ??????. ???? ?? (? : Poisson, Binomial ? Normal)? ?? ??? ???? ??? ?? ??????. ??? ????? ????? ?? ?? ?? ?? ?? ???? ???? ???? ???? ?? ??? ??? ????? ??????.
?? ??
??? ??? ???? ???? ??? ?? ??? ?? ?????. ???? ?? ? ??? Mean, Median ? Mode? ?? ????? AI? ???? ??? ?? ????? ??? ?? ? ????. ?? ??, ?? ?? ??? ??? ?? ??? ??? ?? ?? ?? ??? ?? ??? ???? ???????. ?? ???? ??? ?? ? ?? ????? ????? ??? ?? ??? ?????.
?? ??
?? ??? ???? ?? ??? ??? ??? ?? ??? ?? ?????. ??? ????? ??? ????? ?? ??? ?? AI? ??????. A/B ??? ? AI ??? ??? ??? ???? ??? ?? ?? ??? ???? ?? ?? ??? ??? ?? ? ? ???? ?? ??? ??????. ?? ?? ????? ??? ?? ???? ??? ??? P- ?? ??? ???? ?? ?????.
???? ??
AI?? ???? ??? ?? ?? ?? ????? ? ???? ???? ?? ???? ?? ????????. ?? ? ??? ??? ???? ??? ? ??? ?? ?? ???? ?? ?? ?? ???????? ??? ????? ??????. ???? ??? AI ???? ????? ????? ? ??? ??? ? ? ??? ?????. ??? ??? ?? ??? ???? ?????.
?? ?? ? ?? ??
?? ?? ? ?? ??? ?? AI ?? ??? ??? ?????. ??? ?? ??? ???? ???? ??? ?? ??? ??? ??? ? ??? ??? ? ??? ?? ? ????? ????. ?? ?? ?? (??, ?? ? ???)? ?? ? ??? ?? ?? ?? ???? ??? ?????? ?? ??????.
Python 's Scipy ? StatsModels ???? ?? ??? ???? ?? ??? ?? ??? ??????. ????? ??? ????? ? ? ?? ??? ?? ??? ??? ?? AI ??? ??? ????? ??? ? ????.
?? ??
?? ??? ??
??, ?? ? ?? ??? ???? AI ?? ????? ???? ? ?? ?? ??? ?? ?????. ?? ?? ????? ??? ?? ??? ? ???????. ?? ??, ?? ? ?? AI?? ?? ? ??? ??, ?? ????? ???? ?? ?? ? ??? ??? ???????. ? ??? ??? ??? ?? ?? ??? ??? ?? ??? ??? ??? ? ??? ?????.
???? ML ????
???? ?? ?? ????? ???? ?? ?????. ?? ? ?? ??? ?? ???? ??? ??? ?? ?? ?????? ?? ?? ? ???????. ?? ? ?? ?? ???? ?? ?? ??? ??? ?? ??????. ?? ??? ?? ?? ???? ??? ??????. ??? ?????? ?? ?? (SVM)?? ?? ???????. ?? ??? ??? ??? ?????? ??? ?? ??????.
??? ???? : SVM (Support Vector Machine) ????? ?? ??
K- ?? ?????? ???? ?? ????? ?? ?????. ???? ?? ?? ?? ???? ?? ??? ?? ?? ? ??? ?? ??? ? ???????. ?? ?? ?? ?? (PCA)? ???? ??? ???? ??? ???? ????? ??? ?????.
?? ?? ? ?????
??? ??? ?? ????? ? ??? ???? ? ??? ??? ?? ?? ? ????. ?? ??, ?? ?? ? ??? ? ?? ??? ?? ??? ?? ??? ? ???????. ?? ??? ?? ?????? ?? ?? ???? ??? ??? ?? ???????.
?? ??
ML??? ?? ??? ??????. ?? ???? ?? ?? ????? ?????. ?? ??, ???? ??? ? ??? ??? ?? ??? ??? ?? ? ????. ??, ??, ?? ? F1- ??? ? ??? ? ????. AUC ? ROC ??? ??? ?? ?? ??? ??? ??? ????? ???? ??? ?????. ??? ??? ??? ??? ?? ??? ?? ??? ????? ?? ??? ? ???????.
??, ?? ?? ? ?? ??
??? ??? ??? ??? ? ?? ??? ??? ??? ???? ??????. ?? (? : ?? ??? ? ??? ?? ??) ? ??? (? : ??? ? ??? ??)? ??????. ??? ?? ?? ??? ???? ??? ???, ?? ?? ???? ?? ??? ??? ?????. K- ?? ?? ??? ???? ??? ??????.
Numpy? ?? ??? ??? ????? ???? ??? ? ?? ??????. ? ??? ?? ??? ???? ??? ?? ?? ? ????.
??? ?????? : ?? ???? ??? ? ???? ?????
? ??
AI? ?? ??? ?? ??? ?? ?? ? ? ??? ?? ?? ? ????. ????? AI ???? ???? ?? ???? ??? ??? ???? ?? ??????. ?? Sigmoid, Tanh ? Relu? ?? ??? ??? ??? ?? ??? ????, ? ????? ?? ? ???? ???? ??? ?? ??? ?? ?? ?????. ???? ?? ??? ??, Adam ? RMSProp? ?? ?? ??? ??, ?? ???? ? ??? ????? ??? ???????.
???? ??
?? AI ????? ?? ??? ???? ???? ?? ?????. RNN (Reburrent Neural Network)? ??? ?? ???? ?? ??? ???? ?? ??? ??? CNN (Convolutional Neural Networks)? ?? ??? ?? ??? ?????. LSTM (Long Shompermer Memory) ?????? ??? RNN? ?? ? ??? ???? ????? ??? ????. ?? ?? ?? ??? ??? ????? ?? ??? ??????. ??, ?? ???? ?? ?? ? ?? ??? ????? ?? ?? ???? ?? GAN? ??? ???? ???? ? ?????.
??? ??
?? ???? AI? ???? ???? ? ?? ??? ?? ???? ?????. Google? Tensorflow? ?? ??? API ? ??? API? ?? ???? ?? Facebook? Pytorch? ?? ?? ???? ? ??? ????. Tensorflow ??? Keras? ?? ??? API? ???? JAX? ?? ??? ??? ??? ??? ?? ?? ? ???? ????. ????? ??? ??? ??? ??? ?? ????? ??? ????? ??????.
??? ???? : 2024 ?? ??? ?? 5 ? ?? AI ??? ??
?? ??
??? ? ? ?? ??? ?? ???? ?????. ???? ?? ???? ?? ?? ? ??? ???? ?? ??? ??? ??? ?? ?? ? ??? ???? ?? ??? ?????. ???? ???? ????? ?? ???, ?? ?? ? L1/L2 ???? ?? ??? ??? ???????. ???? ? ??? ???? ?? ??? ????? ?? ?? ?? ?? ??? ?????.
???? ??? ????? ?????. ???? ? ?? ??? ??? ???? ??? ??? ?????, ??? ????? ????? ????, ? ?? ??? ???? ??? ????, ?? ???? ???? ????? ???? ?? ? ? ??????. ??? ???? ??? ???? ????? ?? ??? ??? ?????.
???? ?? Kaggle ??? ????? ?? ?? ????? ????? ?? ??? ?? ?? ? ??? ?? ??? ???? ??? ? ????? ???? ?????. ?? ? ??? ??? ???? ????? ?? ?? ??? ??? ?? ?? ??? ???? ?? ??????. ???? ?? ??? ??? ???? ??? ??? ???? ??? ??? ???? ?? ????.
??? ??
?? ?? ?? ????
??? ??? ??? ?? ?? ? ??? ??? ?? ??? ??? ??? CNN (Convolutional Neural Networks)? ?? ?????. ??? ?? ????? ??? ??? ??? ?????? ?? ? ??? ???? ?? ?? ? ?? ?? ????? ??? ??? ?? ??? ?? ??????. ???? ?? ??? ???? CNN? ?? ????? ? ?? ??? ???? ??? ?? ??? ? ???????.
?? ??
?? ??? ??? ??? ?? ??? ??? ??? ??? ??? ??????? CNN? ?? ? ?? ? ??????. R-CNN, ? ?? R-CNN, Yolo ? SSD? ?? ??? ????? ???? ??, ?? ? ?? ??? ?? ? ? ????. ?? ?? ????? ?? ??? ???? ?? ??? ???? ??? ??? ??? ???, ?? ? ?? ???? ??? ?? ??? ?? ??????.
??? ???
?? ?? ????? ????? ? ??? ??? ???? ???? ?? ? ??? ???? ???? ??????. ?? ??, ?? ?? ? ?? ??? ?? ?? ?????? ?? ??? ??? ?? ????. FCN, Deeplab ? U-Net? ?? ?? ??? ?? ?? ??? ???? ?? ? ?? ? ?? ??? ???? ??? ???? ??? ?? ??? ? ????? ????.
?? ??? ????
GANS (Generative Adversarial Networks)? ?? ?? ??? AI ???? ???? ????. ? ?? ? ??? ? ?? ?? ?? ???? (??? ? ?? ?)? ?? ???? ?? ????? ??? ??? ??? ????? ?? ???? ?? ???? ????. ?? ??, ?? ?? ?? ? ??? ??, ???-??? ?? ? ?? ?? ??? ?? GAN? ??? ?? ????? ??????.
?? ??
?? ??? ??? ???? ?? ?? ???? ???? ????? ??? ??? ??? ?? ?????. ??? ??????? ????? ??? GANS? ?? ??????? ????? ??? ????? ?? ??? ??? ???, ?? ?? ?? ?? ???? ?????.
? ??? ??? ???? ???? ???, ??? ?? ??? ? ???? ????? ????? ??? ???? ?? ?????. ??? ?? ??? ??? ??? ???? ?? ??? ????? ?? ?????? ?? ???? ????? ??????. ??? ??? ???? ?? ???? ???? ?? ???? ?? ?? ??? GAN ?? ????? ?? ??? ??? ???? ????? ???? ???? ?? ? ? ????.
AI ???? ?? AI ????? ?? ??? ???, ?? ?? ? ??? ? ?? ??? ?? ?? ? ???????. ? ??? ??? ?? ?? ??? ??? ??? ???? ??? ???? ?? ?? ??? ??? ??? ??? ?????? ?? ?? ? ??? ? ? ????.
?? ?? : ?? AI?? ?? ??? ?? ??
???? ??
AI ?? ??? ?? ???? ??? ??? ???? ???? ?????. ?????, ??? ??? ? ? ??? ? ?? ??? ?? ??? ? ?? ??? ?????. ???? ??????? ?? ??? ????? ???? ?? ??? ?? ? ??? ????? ???? ??? ???? ????. ??? ??? ???? ???? ??? ??? ???? ????? ???? ?? ???? ??? ?????.
??? ?? ????
???? ??? ??? ?? ????? ???? ?? ????. ?? ???? ?? ? ?? ? ???? ???? ?? ????? ?? ?????. ? ??? ??? ???? ?? ?? ??? ?? ??? ?? ???? ????. ? ??? ??? ??? ??? ??? ???? ????? ??? ???? ?????. ??? ???? ????? ??? ?? ??? ??? ???? ????? ???? ?????.
???? ??? ??? ?? ?? ? ?????. ???? ?? ??? ?? ???? ?? ? ?? ?? ??? ?? ?? ? ?? ???? ?????. ??? ?? ???? ?? ???? ??? ??? ??? ? ?? ????? ??? ??? ??? ?????. ??? ?????? ?? ?? ??? ???? ?? ?? ? ?? ??? ?? ??? ???? ?? ????.
??? ???? : ?? ?? ??? ? : ???? ???? ??? ?? ???
???? ??? ??
???? ??? ? ?? ???, ??? ??? ???? ????. ??, ??? ?? ? ????? ?? ??? ??? ???? ?? ??? ???? ?? ??? ? ??? ???? ????. ?? ?????? ??? ?? ? ?? ??? ??? ??????. ??? ??? ???? ?? ??? ??? ?? ??? ?? ???? ?? ??? ???? ????. ??? ???? ??, ????? ?? ???? ??? ? ??? ???? ??? ??? ????? ??? ??? ?? ? ????.
???? ??? ?? ??? ??
??? ??? ??? ?? ??? ??? ??? ?????. ?? ???? ???? ??? ???? ??? ??? ??? ? ??? ?????? ??? ???? ?? ? ???? ?? ??? ?????. ??? ?? ?? ??? ??? ?? ??? ??? ??? ??? ??? ??? ???? ????. ?? ?? ???? ??? ???? ?? ? ???? ??? ?? ??? ???? ?? ?????. ? ??? ???? ????? ??? ??? ??? ?? ??? ???? ???? ?? ??? ?? ??? ??? ?? ???????.
???? ?? ???? ?? ? ??? ??? ?????, ??, ?? ? ?? ?? ??? ??? ?? ??? ???? ?? ??? ???????. ???? ??? ??? ??? ??? ??? ?? ??? ?? ????, ??? ???? AI? ??? ??? AI? ??? ???? ??? ?? ? ? ???? ?? ???? ??? ??????.
???? ? ??
???? AI ??? ???? ?? ??? ? ?? ?? ??? ???? ??? ? ?? ??? ?? ? ? ????? ?? ?????. ??? ??? ??, ?? ?? ? ?? ??? ???????. ???? ???? ?? ? ?? ??? ?? ?? ? ?? ??? ?? ? ??? ??? ??? ?? ??? ? ????? ??????.
??? ?? ??? ?? ??? ?? ?? ?? ?????. AI ?? ???? ??? ??? ??? ??? ????? ?? ??? ???? ?????. ??? ??? ??? ???? ??? ?? ??? ??? ????? ? ???? ??? ?? ??? ?? ??? ?? ?? ??????.
??? ??
??? ??? ??
?? NLP ??? ?? ??? ??? ??????. ??? ?? ?? ??? ???? ????? ???? ????????. ?? ??? ???? ???? ??? ???? ?? ?? ? ?? ??? ????. Lemmatisation ? Stemming? ??? ?? ???? ??? ??? ? ?? ????? ??? ???? ?? ??? ?????. ?? ??? ??? ???? ??? ??, ?? ??? ? ?? ?? ??? ?????. ?? ????? ??, ???? ?? ?? ??? ?? ? ?? ?? ??? ??? ? ????. ??? ??? ??? ?? NLP ??? ??? ? ?????? ? ??? ? ? ????.
?? ???
??? ??? ???? ??? ??? ?? ?? ??? ?????? Word Embedings? ??? ?? (NLP)? ??????. Google? ?? ???? ???? ??? ??? ??? ???? Word ??? ???? Word2Vec? ??????. ???? ? ??? ??? ??? ???? ??? ?? ???? ???????. ???? ??? ??? ??? ??, ?? ? ??? ??? ??? ????? ??????.
?? ??
?? NLP ??? ?? ??? ?? ????. ??? N- ?? ??? ??? ????? ? ???? ??? ?? ?? ???? ???? ? ?????. ??? ?? ?? ??, ?? ?? ? ?? ???? (RNN) ? LSTM (Long Shomper-Term Memory) ????? ?? ??????, ?? ??? ?????? ???? ??????. ??? ?? ??? ???? ??? ????? ??? ?? ??????. ? ????? ????? ???? ?? ???? ??? ???? ???? ??? ???? ?? ?? ??? ???? ?????.
??? ?? : ??? ????? ????? ??????
??? ?? ??
NLP ???? GPT (?? ?? ?? ? ???) ? Bert (Transformers? ??? ??? ??)? ?? ??? ?? ??? ??? ??? ??????. Google? Bert ????? ?? ? ??? ????? ??? ???? ??? ????? ???? ? ?? ?????. ?? ?? ? ??? ?? ??? ?? ??? ?? ??????. Openai? GPT? ?? ???? ???? ??? ?? ??? ???????. ??? ?? ???? GPT-4? ?? ?? ??? ??? ??? ?? ??? ??? ??? ???????. NLP?? ??? ?? ?? ?? ??? ?? ????, ?? ?? ? ????? ???? ?? ??????.
Code Creation?? ??? ??? ????? ??? ???? GPT-3 ? ??? ?? ??? ?? ??? ??? ???????. ? ??? ?? AI, ??? ? ??? ?? ? ??? ?? ??? ?? ???? ??? ??? ??????. ??? ??? ?? ??, ?? ?? ? ?? ??? ?? ??? ??? ?? AI? ?? ??? ??? ?????.
??? ??? ???? ??? ?? ? ????. ??? ? ?? ???? LLMS? ?? ???? ??? ??? ? ????. ??? ?? ??? ?? ?????? ? ?? ??? ??? ? ????. ??? ?? ???? ?? ?? ? ?? ??? ??? ? ????. ??? ??? ???? ??? ????. ???? ?? ? ??? ??? ???? AI ?? ??? ???? ???? ???? ?? ???? ??? ??? ???? AI? ???? ????? ??? ?? ???? ?????.
??? ?? ??? ???? ???
?? ?? ? ?? ????? ?? ??? ???? NLP ?????. ?? ??? ?????? ?? ??? ??? ????? ????????? ?? ??? ???? ??? ?? ???? ?????. ?? ? ??? ?? (NER)? ????? ?? ? ??? (? : ?? ??, ??, ??)? ???? ???? ?? ?? ? ?? ?? ???? ?? ?? ?????. ?? ??? ?? ??? ??? ?? ??? ??? ?? ??? ??? ??????. ??? ??? ?? ??? NLP ?? ??????? ?? ?? ??????.
AI ???? NLP ??? ???? ??? ??????
AI ??? ???? ??? ?? ?? ?? ??? NLP? ? ?? ??? ?? ??? ? ?????????. ??? ??? ???? ??, ??? ??, ??? ??? ??? ???????. ??? ???? ?? ??? ??? ???? NLP ??? ?? ???? ? ?? ??? ??? ?? ? ? ??? ???????.
NLP? ??? ???? ?? ???? ??? ?? ??? ?? ?? ??? ???? ?? ??????. ?? ???? ?? ??, ?? ?? ?? ? ??? ?? ????? ?? ??? ???????. ?? NLP ??? ?? ??? ? ???? ?? ??? ??? ?? ??? ??? ?? ??? ???? ? ??????.
? ?? ??
LLM? AI? ??? ???? ??? ???? ???? ??? ??? AI? ?? ??? ?????. ? ??? ?? ??? ??? ????? ??? ??? ??? ?? ???????. ? ??? ?? OpenAi? GPT ???, Google 's Bert ? Meta? LLAMA? ?? ?? ?????. ??? ?? ??? ???? ??? ??? ??? ???? ????, ?? ??? ??? ???? ???? ???? ?? ???? ????.
?? ?? ? ?? ??
?? ?? ? ?? ??? LLM? ??? ??????. ? ??? ?? ?? ?? ??? ????? ???? ?? ??? ??? ?????. ? ??? ????? ?? ?? ??? ???? ????? ?? ????. ??? ?? ??? ? ?? ??? ? ??? ??? ???? ?? ?? ? ??? ?? ?? ?? ????? ?????. ? 2 ?? ??? ?????? LLMS? ?? ?? ????? ?? ???? ?? ??? ???? ?? ??? ??? ??? ? ?? ??? ?? ?? ?? ? ????.
?? ? ??
?? ??? LLM? ?? ??? ?? ? ?????. ?? ?? ? ?? ? ?? ??? ?? LLM? ??? ???? ?? ????? ?????. ?? ?? ??? ? ??? ?? ??? ?? ??? ???? ???? ???? ???? ??? ? ????. ??? ?? LLMS? ?? ????? ??? ??? ??? ??? ???? ??? ? ?? ??? ??? ?? ??? ??????.
?? ?? ??? ?
AI ???????? LLMS? ?? ? ? ??? ?? ?? ??? ? ?? ??? ????. ?? ? ??? ??? ???? ?? ??? ???? ?? ??? ???? ?? ??? ???? ???????. ? ????? ??? ??? ?? ? ?????,?? ?? ??? ??? ??? ???? ??? ??? ??? ??? ? ????. ??? ??? ??? ???? ?? ?? ?? ???? ?? ???? ?? ?? ??? ??? ??? ?? ??? ? ????.
??? ???? : Zero Shot, One Shot ? News Shot Learning? ?? ??????.
LLM? ??
LLM? ???? ???? ? ??? ??? ????. ??? ???? ???? ????.
- ??? ?? : ??? ??? ??? ???? LLM? ???, ??? ? ??? ??? ?? ????.
- ?? : ??? ?? ??? ???? ??? ? ?? ??? ???? ???? ??? ?? ? ? ????.
- ?? ?? : LLMS? ?? ?? ??, ?? ?? ? ??? ?? (??? ?? ????)? ?? ????.
- ???? : ?? ?? ? ??? ???? ?? ????? ??? ????? ?? ?? ?????.
- ??? ?? : ????? ???? ???? ???? ?? ??? ?? LLMS? ???? ?????.
LLM ??? ??
??? LLM? ??? ?? ??? ??? ??? ?? ??? ?????.
- ???? ?? : LLM? ?? ????? ?? ? ??? ????? ?? ? ???? ?? ??? ???? ??? ?? ? ? ????.
- ??? ?? : LLMS? ??? ???? ?? ??? ???? ?? LLM? ??? ??? ?? ? ??? ???? ?????.
- ?? ?? ?? : ??? ?? ?? ? ?? ?? ???? ?? ??? ??? ??? ????? ? ???? ??? ?? ???? ?? ?????.
- ??? ?? ?? : ? LLM? ????? ???? ? ??? ?? ??? ??? ?? ?? ? ??? ????.
- ?? ?? : ??? ?? ? ??? ?? ??? ?? ??? ???? ?????? ??? ???? ?? ?? ? ??? ??? ??????.
???? ? ??
AI ??? ???? ?????? LLM? ??? ???? ??? ? ?? ??? ???? ?? ?????. ???? ?? ? ??? ?? ?????.
- LLM? ???? ? ?? NLP ??? ??? ???.
- ??? ??? ?? ??? ??? ??? ?? ????.
- ?? ??? ?? LLM? ?? ???? ???? ??.
- ??? ???? LLM? ???? ????? ??.
- LLM? ?? ?? ? ?? ????? ??.
- ??? ?? ???? LLM? ??? ?? ? ??? ??? ??? ??.
LLM? ?? ?, ?? AI ?? (? : ??? ?? ?? ?? ??)? ??? ? ?????, ????? ??? ? ?? ??? ??? ? ??? ??? ?? ??? ?? ?? ??? ?? ? ?? ??. Applicants must be ready to have meaningful conversations regarding these new paths and how they might affect society and technology.
Small Language Models
Concerns over Large Language Models' influence on the environment and computing requirements have led to the emergence of SLMs. Even while LLMs have shown remarkable potential, many real-world applications—especially those that call for low latency or operation on edge devices—find them unfeasible due to their size and resource requirements. By providing equivalent performance on particular tasks with a substantially smaller computing footprint, SLMs seek to close this gap.
Parameter Efficiency
The foundation of SLMs is the idea of parameter efficiency. These models are made to operate well with a small number of parameters compared to larger ones. Training techniques and thoughtful architecture design are frequently used to attain this efficiency. To cut down on pointless computations, certain SLMs, for example, employ sparse attention mechanisms that concentrate on the most pertinent portions of the input. Others use cutting-edge optimization strategies or activation functions to create more expressive models with fewer parameters.
Model Compression
Model compression techniques play a crucial role in developing SLMs. ???? ??? ?????.
- Pruning: It is the process of lowering a larger model's size while preserving the majority of its functionality. It entails deleting neurons or connections that aren't as critical.
- Quantization: This drastically reduces the memory footprint and processing needs of the model by decreasing the precision of its weights (eg, from 32-bit to 8-bit or even lower).
- Distillation: In this method, a smaller model (called the “student”) is trained to imitate the actions of a more sophisticated, larger model (called the “teacher”). With a far smaller architecture, the student model learns to generate outputs that are comparable to those of the teacher.
- Neural Architecture Search (NAS): NAS is an automated procedure that investigates several model architectures in order to determine which is the most effective for a certain task. It frequently yields innovative designs that are not typically considered by human specialists.
Applications of SLMs
The applications of SLMs are particularly exciting in areas where computational resources are limited:
- Edge Computing: SLMs can be installed on Internet of Things (IoT) devices, allowing for on-device natural language creation and understanding without the need for cloud services. This lowers latency and has privacy issues.
- Mobile Devices: By incorporating SLMs into tablets and smartphones, more advanced on-device language processing is possible, including real-time translation and enhanced text prediction and autocorrection.
- Embedded Systems: SLMs can provide voice control and natural language interfaces in industrial or automotive settings where processing power or connectivity are restricted.
- Real-time Applications: SLMs provide a performance-speed balance for jobs like simultaneous translation or live captioning, where low latency is essential.
- Resource-constrained Environments: In developing regions or areas with limited internet connectivity, SLMs can provide access to advanced language technologies that would otherwise be unavailable.
Challenges of Developing SLMs
The development of SLMs also raises interesting research questions and challenges:
- Trade-offs between Model Size and Performance: Research is still being done to determine the best way to combine model size with task performance.
- Task-Specific vs. General Models: Although many SLMs are tailored for certain tasks, there is a need to create tiny models with broader applications.
- Continual Learning: Investigating how SLMs can be modified or tailored to new assignments without appreciably growing in size.
- Interpretability: Better interpretability is generally provided by smaller models, which is important for many applications, particularly in regulated industries.
- Ethical Considerations: SLMs bring up new issues regarding data privacy and the democratization of AI technology, even as they address some of the ethical concerns of LLMs (such as environmental effects).
Points to Keep in Mind
For those preparing for AI job interviews, it's important to understand:
- The technological methods for developing SLMs, like as compression algorithms and architectural plans.
- The compromises made during model compression and the methods for comparing SLM performance to those of larger models.
- The particular use situations where SLMs perform particularly well and where they might not perform as well as LLMs.
- How to incorporate SLMs into more complex applications or systems while taking power, memory, and latency into account.
- The present status of SLM research and possible directions for future growth in the area.
SLMs are a significant step in the path of more effective and approachable language models as AI continues to advance. They put into question the idea that in AI, more is necessarily better, encouraging practitioners and academics to come up with creative ways to accomplish more with less. This tendency is in line with the more general objectives of sustainable AI and has the potential to significantly increase the influence and reach of language technology in a variety of fields and geographical areas.
Multimodal Models
Similar to how people process and integrate information from various sensory inputs or data kinds in daily life, multimodal AI models are made to do the same. Multimodal AI models can handle multiple types of data at once, including text, photos, audio, and even video, while traditional AI models often specialize in one domain (eg, text or images). This capacity makes it possible to comprehend complex situations in a more comprehensive and context-rich way.
Also Read: AI Can Now See & Listen: Welcome to the World of Multimodal AI
Vision-Language Models
One well-known application of multimodal AI is in vision-language models, or VLMs. These models can comprehend the connection between images and their written descriptions, such as OpenAI's CLIP (Contrastive Language-Image Pre-training) model. CLIP can carry out tasks like picture classification and retrieval based on natural language queries because it has been trained on a large dataset of image-text pairs. With this method, the model has demonstrated amazing zero-shot learning skills, allowing it to categorize photos into categories for which it was not specifically trained.
Another innovation from OpenAI, DALL-E, expands on this idea by producing visuals from written descriptions. This model exhibits a profound comprehension of both linguistic and visual concepts, enabling it to produce original graphics that inventively and occasionally surrealistically blend several aspects. The most recent versions of these models, such as DALL-E 2 and Midjourney, have demonstrated progressively remarkable capacities to produce extremely finely detailed and contextually accurate visuals.
Multimodal Embeddings
One important technological idea in these models is multimodal embeddings. They entail establishing a common representational space where various data kinds (including text and graphics) can be encoded. This enables the model to carry out cross-modal operations, such as translating concepts from one modality to another or identifying similarities between visuals and text descriptions. This integration is frequently accomplished through the use of strategies like joint embedding spaces and cross-attention mechanisms.
Applications of Multimodal Models
The applications of multimodal models are vast and growing:
- Image and Video Captioning: Content management systems and accessibility technologies can benefit from automatically generated descriptive text for visual content.
- Visual Question Answering (VQA): Responding to inquiries regarding images is known as Visual Question Answering, and it finds use in assistive technologies for the blind and visually impaired as well as e-commerce.
- Cross-modal Retrieval: It improves search capabilities in big multimedia collections by locating pertinent images based on text queries or the other way around.
- Multimodal Sentiment Analysis: Sentiment analysis that combines textual, visual, and auditory inputs is known as multimodal sentiment analysis. It is helpful for customer feedback analysis and social media monitoring.
- Robotics and Autonomous Systems: Combining textual and visual data to improve decision-making in complicated situations.
- Healthcare: Integrating textual patient data with medical imaging to provide more thorough diagnosis and treatment planning.
- Education: Using text, graphics, and audio in instructional content to create more dynamic and interesting learning experiences.
- Augmented and Virtual Reality: Providing natural language interaction with visual settings to improve immersive experiences.
Points to Keep in Mind
For those preparing for AI job interviews, it's important to understand:
- The architectures commonly used in multimodal models, such as transformer-based models with cross-attention mechanisms.
- Techniques for pre-training and fine-tuning multimodal models.
- Methods for evaluating the performance of multimodal models, including cross-modal retrieval metrics and human evaluation for generative tasks.
- The challenges in data preprocessing and representation for different modalities.
- Current limitations of multimodal models and areas for improvement.
- Potential applications of multimodal AI in various industries and how they might transform current practices.
Multimodal models are likely to become increasingly important as AI develops. They represent a first step towards more comprehensive artificial intelligence systems, whose understanding of and interactions with the outside world more closely resemble those of human cognition. The ability to integrate different types of data opens up new possibilities for AI applications in a range of domains, from enhancing the interface between humans and computers to enabling more complex analysis and decision-making in complex scenarios.
Deployment and Monitoring of AI Models
??
As AI models become more sophisticated, effectively deploying them in real-world scenarios is crucial. Techniques like model optimization, container-based deployment, and edge deployment enable developers to run these models efficiently and reliably across different environments. By implementing strategies like model quantization and pruning, you can reduce the size and inference time of models, making them suitable for deployment on resource-constrained edge devices. Containerization helps ensure consistent and scalable deployment, while serverless cloud functions allow for easy, low-maintenance model hosting.
Monitoring and Observability
Ensuring the ongoing performance and reliability of deployed AI models is essential. Tracking key metrics like accuracy, precision, and recall can help you identify any degradation in model performance. Monitoring for data drift, where the distribution of production data differs from the training data, can signal the need for model retraining. Anomaly detection techniques can uncover unusual inputs or outputs that may indicate issues with the model or the underlying system. Additionally, explainability and interpretability methods, such as saliency maps and feature importance, can provide insights into how the model is making decisions, which is crucial for high-stakes applications like healthcare and finance.
??
To succeed in the rapidly evolving field of artificial intelligence and perform well in job interviews, candidates need to have a strong foundation in crucial areas including machine learning, deep learning, natural language processing, and statistics. It is imperative to obtain practical experience through projects, Kaggle challenges, and contributions to open-source software. It's critical to stay up to date on the latest advancements through reading research papers, attending conferences, and following reputable AI specialists. Understanding the broader implications of AI, such as moral dilemmas and potential social repercussions, is equally crucial.
Applicants should be prepared to talk about both cutting-edge methods used today and new developments in AI, such as effective tiny language models and multimodal models. Key to demonstrating both technical proficiency and practical comprehension is the ability to explain intricate AI ideas and their practical applications. In the quickly evolving field of artificial intelligence, where new models, techniques, and applications are continually appearing, adaptability and original thinking are especially critical. Candidates can position themselves as well-rounded AI experts capable of contributing to the field's future developments by adopting this holistic approach.
If you want to upskill and stay relevant in these changing times, check out our GenAI Pinnacle Program. Learn from industry experts and gain practical experience through hands-on projects and mentorship. ?? ??????!
?? ?? ??
Q1. What fundamental abilities should I concentrate on during an AI interview?A. Put your attention on math (calculus, probability, linear algebra), Python programming, the principles of machine learning and deep learning, and your familiarity with AI frameworks like TensorFlow and PyTorch.
Q2. How do I prepare for queries using Large Language Models (LLMs)?A. Get familiar with important models like GPT and BERT and study the design and operation of LLMs, including pre-training and fine-tuning procedures.
Q3. How crucial are transformers to artificial intelligence?A. To process data in parallel using self-attention mechanisms, transformers are essential to modern NLP. It is essential to comprehend their architecture, especially the encoder-decoder structures.
Q4. What distinguishes LLMs from Small Language Models (SLMs)?A. The answer is that SLMs are efficient because they need less computational power and parameters to achieve the same level of performance, which makes them appropriate for contexts with limited resources.
Q5. Describe multimodal models and explain their significance.A. Multimodal models are designed to process and integrate several sorts of data, including text, images, and audio. They are necessary for jobs that call for a thorough comprehension of several different data sources.
? ??? AI ??? ???? ??? - ?? Vidhya? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? AI ??

Undress AI Tool
??? ???? ??

Undresser.AI Undress
???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover
???? ?? ???? ??? AI ?????.

Clothoff.io
AI ? ???

Video Face Swap
??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

?? ??

??? ??

???++7.3.1
???? ?? ?? ?? ???

SublimeText3 ??? ??
??? ??, ???? ?? ????.

???? 13.0.1 ???
??? PHP ?? ?? ??

???? CS6
??? ? ?? ??

SublimeText3 Mac ??
? ??? ?? ?? ?????(SublimeText3)

?? ? Genai ??? ?? ? ?? ?? ?? ??? ??? ??????? DeepSeek? ???? ?? ??? ?? ??? Kimi K1.5? ???? ???? ?? ? ??????. ??? ??? ?? ??????.

20125 ? ???? AI“?? ??”? ???? ??? Xai? Anthropic? ???? ?? ? Grok 4? Claude 4? ??????.? ? ??? ??? ??? ?? ???? ??? ?? ????.

??? ??? ??? 10 ?? ??? ??? ?? ????. ???, ???? ???? ??? ?? ??? ? ?? ??? ?? ? ??? ?? ?? ??? ????. ?? ? ? ?? ?? ??? ??? ?? ??? T?? ??? ?? ?????.

?? ?? ???? ?????? ?? ?? ?? (LLM)? ?? ???? ? ??? ??? ???????. ??? ??? LLM? ??? ???? ?? ??????. ??? ??? ??

?? AI ?? ? Manus? ?? ??????. ? ? ?? ?????? ? ? ?? ???? ? ?? ??? ??? ??????. ?? ???? ???? ? ???? ??? ?? MO? ?? ? ? ????.

Leia? ??? ?? ?? ??? ???? ?? ??? ?????? ???? ?, ? ? ?? ??? ?? ????? ? ??? ?? ???? ??? ???? SCE? ????? ????? ?? ??? ?? ????.

King 's College London? University of Oxford? ????? ??? ??? ??? Openai, Google ? Anthropic? ?? ? ??? ???? ???? ? ?? ???? ?? ???? ?? ??? ?????. ??? ????

???? ??? ?? ???? ?? ??? ???? ?? ? ??? ? AI ??? ?? ??? ?? ????? ? ?? ??????? ?? ?? ?? ?? ?? ?? ??? ???? ??? ???.
