解決策: urllib3 ProxySchemeUnknown(proxy.scheme)
Feb 29, 2024 pm 07:01 PMエラーの原因
urllib3 の ProxySchemeUnknown(proxy.scheme) エラーは、通常、サポートされていないプロキシ プロトコルの使用が原因で発生します。この場合、urllib3 はプロキシ サーバー のプロトコル タイプを認識しないため、 ネットワーク 接続にプロキシを使用できません。この問題を解決するには、Http や https などのサポートされているプロキシ プロトコルを使用していることを確認する必要があります。
この問題の解決方法
この問題を解決するには、HTTP や HTTPS など、サポートされているプロキシ プロトコルを使用していることを確認する必要があります。
この問題は、urllib3 のプロキシ パラメータを設定することで解決できます。
http プロキシを使用している場合のコード例は次のとおりです:
import urllib3 http = urllib3.PoolManager() proxy = urllib3.ProxyManager('http://proxy.server:3128') r = proxy.request('GET', 'http://httpbin.org/ip') print(r.data)
https プロキシを使用している場合のコード例は次のとおりです:
import urllib3 https = urllib3.PoolManager() proxy = urllib3.ProxyManager('https://proxy.server:3128') r = proxy.request('GET', 'https://httpbin.org/ip') print(r.data)
サードパーティのライブラリまたは フレームワークを使用している場合は、そのドキュメントで詳細情報を確認する必要があります。
また、プロキシを使用するにはプロキシ サーバーの認証が必要であることに注意してください。認証が必要な場合は、プロキシ オブジェクトの作成時にユーザー名とパスワードを渡す必要があります。
使用例
はい、ユーザー名とパスワードを使用してプロキシを認証する必要がある場合は、urllib3 の ProxyManager クラスを使用して、ユーザー名とパスワードを渡して認証を設定できます。
コード例は次のとおりです:
import urllib3 proxy = urllib3.ProxyManager('http://proxy.server:3128', proxy_username='username', proxy_passWord='password') r = proxy.request('GET', 'http://httpbin.org/ip') print(r.data)
or
rreeサードパーティのライブラリまたはフレームワークを使用している場合は、そのドキュメントで詳細な情報を確認する必要があります。
以上が解決策: urllib3 ProxySchemeUnknown(proxy.scheme)の詳細內容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

ホットAIツール

Undress AI Tool
脫衣畫像を無料で

Undresser.AI Undress
リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover
寫真から衣服を削除するオンライン AI ツール。

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中國語版
中國語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ユーザー音聲入力がキャプチャされ、フロントエンドJavaScriptのMediareCorder APIを介してPHPバックエンドに送信されます。 2。PHPはオーディオを一時ファイルとして保存し、STTAPI(GoogleやBaiduの音聲認識など)を呼び出してテキストに変換します。 3。PHPは、テキストをAIサービス(Openaigptなど)に送信して、インテリジェントな返信を取得します。 4。PHPは、TTSAPI(BaiduやGoogle Voice Synthesisなど)を呼び出して音聲ファイルに返信します。 5。PHPは、音聲ファイルをフロントエンドに戻し、相互作用を完了します。プロセス全體は、すべてのリンク間のシームレスな接続を確保するためにPHPによって支配されています。

AIによるテキストエラーの修正と構文最適化を実現(xiàn)するには、次の手順に従う必要があります。1。Baidu、Tencent API、またはオープンソースNLPライブラリなどの適切なAIモデルまたはAPIを選択します。 2。PHPのカールまたはガズルを介してAPIを呼び出し、返品結果を処理します。 3.アプリケーションにエラー修正情報を表示し、ユーザーが採用するかどうかを選択できるようにします。 4.構文の検出とコードの最適化には、PHP-LとPHP_CODESNIFFERを使用します。 5.フィードバックを継続的に収集し、モデルまたはルールを更新して効果を改善します。 AIAPIを選択するときは、PHPの精度、応答速度、価格、サポートの評価に焦點を當てます。コードの最適化は、PSR仕様に従い、キャッシュを合理的に使用し、円形クエリを避け、定期的にコードを確認し、Xを使用する必要があります。

Seabornのジョイントプロットを使用して、2つの変數(shù)間の関係と分布をすばやく視覚化します。 2?;镜膜噬⒉紘恧稀ns.jointplot(data = tips、x = "total_bill"、y = "tip"、dind = "scatter")によって実裝され、中心は散布図であり、ヒストグラムは上部と右側と右側に表示されます。 3.回帰線と密度情報をdind = "reg"に追加し、marminal_kwsを組み合わせてエッジプロットスタイルを設定します。 4。データ量が大きい場合は、「ヘックス」を使用することをお勧めします。

AIセンチメントコンピューティングテクノロジーをPHPアプリケーションに統(tǒng)合するために、COREはセンチメント分析にクラウドサービスAIAPI(Google、AWS、Azureなど)を使用し、HTTPリクエストを介してテキストを送信し、JSON結果を返し、データベースに感情的なデータを保存し、それによって自動化された処理とユーザーフィードバックのデータ検査を実現(xiàn)することです。特定の手順には次のものが含まれます。1。正確性、コスト、言語サポート、統(tǒng)合の複雑さを考慮して、適切なAIセンチメント分析APIを選択します。 2。ガズルまたはカールを使用してリクエストを送信し、センチメントスコア、ラベル、および強度情報を保存します。 3。優(yōu)先順位の並べ替え、トレンド分析、製品の反復方向、ユーザーセグメンテーションをサポートする視覚的なダッシュボードを構築します。 4。APIコールの制限や數(shù)などの技術的課題に対応する

ビデオコンテンツ分析のAIを組み合わせたPHPの中心的なアイデアは、PHPをバックエンド「接著剤」として機能させ、最初にビデオをクラウドストレージにアップロードし、次に非同期分析のためにAIサービス(Google CloudVideoaiなど)を呼び出すことです。 2。PHPは、JSONの結果を解析し、人、オブジェクト、シーン、音聲、その他の情報を抽出して、インテリジェントタグを生成し、データベースに保存します。 3.利點は、PHPの成熟したWebエコシステムを使用して、既存のPHPシステムを持つプロジェクトが効率的に実裝するのに適したAI機能を迅速に統(tǒng)合することです。 4.一般的な課題には、大規(guī)模なファイル処理(事前に署名されたURLを使用したクラウドストレージに直接送信)、非同期タスク(メッセージキューの導入)、コスト制御(オンデマンド分析、予算監(jiān)視)、および結果最適化(ラベル標準化)が含まれます。 5.スマートタグは視覚を大幅に改善します

PHPのAIテキストの概要の開発の中核は、テキストの前処理、APIリクエスト、応答分析、結果表示を実現(xiàn)するためのコーディネーターとして外部AIサービスAPI(Openai、Huggingfaceなど)を呼び出すことです。 2。制限は、コンピューティングのパフォーマンスが弱く、AIエコシステムが弱いことです。応答戦略は、API、サービス分離、非同期処理を活用することです。 3.モデルの選択は、概要の品質、コスト、遅延、並行性、データプライバシー、およびGPTやBART/T5などの抽象モデルを推奨する必要があります。 4.パフォーマンスの最適化には、キャッシュ、非同期キュー、バッチ処理、近くのエリアの選択が含まれます。エラー処理は、システムの安定した効率的な動作を確保するために、現(xiàn)在の制限再生、ネットワークタイムアウト、キーセキュリティ、入力検証、ロギングをカバーする必要があります。

文字列リストは、 '' .join(words)などのJoIn()メソッドとマージして、「Helloworldfrompython」を取得できます。 2。NUMBERリストは、參加する前にMAP(STR、數(shù)字)または[STR(x)forxinNumbers]を備えた文字列に変換する必要があります。 3.任意のタイプリストは、デバッグに適したブラケットと引用符のある文字列に直接変換できます。 4。カスタム形式は、 '|' .join(f "[{item}]" foriteminitems)output "[a] | [などのjoin()と組み合わせたジェネレーター式によって実裝できます。

Pythoncanbeoptimizedformemory-boundoperationsは、ヘッドゲネレーター、EfficientDataStructures、およびManagingObjectlifetimes.first、Usegeneratoratoratoratoratoratoraturatussを使用していることを確認してください
