亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

ホームページ バックエンド開発 C++ C多型:仮想関數(shù)と継承が説明した

C多型:仮想関數(shù)と継承が説明した

May 24, 2025 am 12:01 AM

C++ achieves flexibility in object-oriented programming through polymorphism, specifically via virtual functions and inheritance. 1) Virtual functions enable runtime polymorphism by using a vtable to call the correct function. 2) Inheritance allows derived classes to override these functions, creating a hierarchy where objects can be treated as a common base type, enhancing code modularity and extensibility.

C++ Polymorphism: Virtual Functions and Inheritance Explained

Ever wondered how C++ achieves such flexibility in object-oriented programming? Let's dive into the world of polymorphism, focusing on virtual functions and inheritance. This isn't just about understanding the mechanics; it's about appreciating the elegance and power these concepts bring to your code.

When I first encountered polymorphism in C++, it felt like unlocking a new level of programming. It's not just about writing code that works; it's about crafting solutions that are elegant, maintainable, and scalable. Let's explore how virtual functions and inheritance work together to achieve this.

In C++, polymorphism allows objects of different types to be treated as objects of a common base type. This is particularly useful when you want to write code that can work with different types without knowing the exact type at compile time. Virtual functions are the key to this magic, enabling runtime polymorphism.

Here's a simple example to get us started:

class Shape {
public:
    virtual void draw() const {
        std::cout << "Drawing a shape" << std::endl;
    }
    virtual ~Shape() = default;
};

class Circle : public Shape {
public:
    void draw() const override {
        std::cout << "Drawing a circle" << std::endl;
    }
};

class Rectangle : public Shape {
public:
    void draw() const override {
        std::cout << "Drawing a rectangle" << std::endl;
    }
};

int main() {
    Shape* shapes[] = {new Circle(), new Rectangle()};
    for (const auto& shape : shapes) {
        shape->draw();
    }
    for (auto shape : shapes) {
        delete shape;
    }
    return 0;
}

This code demonstrates how we can use a base class pointer (Shape*) to call the appropriate draw() function for each derived class (Circle and Rectangle). The virtual keyword in the base class ensures that the correct function is called at runtime.

Now, let's delve deeper into how this works and why it's so powerful.

Virtual functions work by creating a virtual table (vtable) for each class that contains virtual functions. This table contains pointers to the actual implementations of these functions. When you call a virtual function through a base class pointer, the program uses the vtable to find the correct function to call. This is what allows for runtime polymorphism.

Inheritance plays a crucial role here. By inheriting from a base class, derived classes can override virtual functions, providing their own implementations. This allows for a hierarchy of classes where each can behave differently while still being treated as the same type at the base level.

One of the things I love about this approach is how it encourages good design. By using polymorphism, you can write code that's more modular and easier to extend. For example, if you want to add a new shape, you simply create a new class that inherits from Shape and overrides the draw() function. No need to change existing code!

However, there are some pitfalls to watch out for. One common mistake is forgetting to declare the destructor of the base class as virtual. If you don't, and you delete an object of a derived class through a base class pointer, you might end up with a memory leak or undefined behavior. Always make sure to declare the destructor as virtual in the base class if you're planning to delete derived objects through base class pointers.

Another consideration is performance. While virtual functions are incredibly useful, they do come with a small overhead due to the vtable lookup. In most cases, this overhead is negligible, but in performance-critical sections of code, you might want to consider alternatives like function pointers or templates.

Let's look at a more advanced example that showcases some of these concepts:

class Animal {
public:
    virtual void makeSound() const = 0; // Pure virtual function
    virtual ~Animal() = default;
};

class Dog : public Animal {
public:
    void makeSound() const override {
        std::cout << "Woof!" << std::endl;
    }
};

class Cat : public Animal {
public:
    void makeSound() const override {
        std::cout << "Meow!" << std::endl;
    }
};

class Zoo {
private:
    std::vector<Animal*> animals;

public:
    void addAnimal(Animal* animal) {
        animals.push_back(animal);
    }

    void makeAllSounds() const {
        for (const auto& animal : animals) {
            animal->makeSound();
        }
    }

    ~Zoo() {
        for (auto animal : animals) {
            delete animal;
        }
    }
};

int main() {
    Zoo zoo;
    zoo.addAnimal(new Dog());
    zoo.addAnimal(new Cat());
    zoo.makeAllSounds();
    return 0;
}

In this example, we use a pure virtual function (makeSound()) to define an abstract base class Animal. This forces all derived classes to implement their own makeSound() function. The Zoo class can then work with any type of Animal, calling the appropriate makeSound() function for each.

This approach is incredibly flexible. You can add new types of animals without changing the Zoo class at all. It's a perfect example of how polymorphism can lead to more maintainable and extensible code.

When using polymorphism, it's also important to consider the Liskov Substitution Principle (LSP). This principle states that objects of a derived class should be able to replace objects of the base class without affecting the correctness of the program. In other words, derived classes should not break the contract established by the base class.

For instance, if you have a Shape class with a draw() function, any derived class should be able to be used wherever a Shape is expected, and the program should still work correctly. This principle helps ensure that your polymorphic code remains robust and reliable.

In terms of performance optimization, one strategy is to use the "non-virtual interface" (NVI) idiom. This involves making the public interface of a class non-virtual and calling protected virtual functions internally. This can help reduce the overhead of virtual function calls while still maintaining the benefits of polymorphism.

class Shape {
public:
    void draw() const {
        doDraw();
    }

protected:
    virtual void doDraw() const = 0;
};

class Circle : public Shape {
protected:
    void doDraw() const override {
        std::cout << "Drawing a circle" << std::endl;
    }
};

class Rectangle : public Shape {
protected:
    void doDraw() const override {
        std::cout << "Drawing a rectangle" << std::endl;
    }
};

By using this approach, you can control the interface of your class while still allowing for polymorphic behavior.

In conclusion, virtual functions and inheritance in C++ are powerful tools that enable polymorphism, leading to more flexible, maintainable, and scalable code. While they come with some overhead and require careful design, the benefits they provide are well worth it. As you continue to explore C++ and object-oriented programming, keep these concepts in mind and experiment with them in your own projects. You'll find that they open up a world of possibilities in your coding journey.

以上がC多型:仮想関數(shù)と継承が説明したの詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場(chǎng)合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

c Pythonを知っている人のためのチュートリアル c Pythonを知っている人のためのチュートリアル Jul 01, 2025 am 01:11 AM

Pythonの移籍を研究する人は、最も直接的な混亂を抱えています。なぜPythonのように書くことができないのですか?構(gòu)文はより複雑ですが、基礎(chǔ)となる制御機(jī)能とパフォーマンスの利點(diǎn)を提供します。 1。構(gòu)文構(gòu)造の観點(diǎn)から、Cはインデントの代わりに巻き毛のブレース{}を使用してコードブロックを整理し、可変型を明示的に宣言する必要があります。 2。タイプシステムとメモリ管理の観點(diǎn)から、Cには自動(dòng)ガベージ収集メカニズムがなく、メモリを手動(dòng)で管理し、リリースのリリースに注意を払う必要があります。 RAIIテクノロジーは、リソース管理を支援できます。 3。関數(shù)とクラスの定義では、Cは修飾子、コンストラクター、デストラクタを明示的にアクセスし、オペレーターの過負(fù)荷などの高度な機(jī)能をサポートする必要があります。 4。標(biāo)準(zhǔn)ライブラリに関しては、STLは強(qiáng)力なコンテナとアルゴリズムを提供しますが、一般的なプログラミングのアイデアに適応する必要があります。 5

cチュートリアル標(biāo)準(zhǔn)テンプレートライブラリ(STL)のチュートリアル cチュートリアル標(biāo)準(zhǔn)テンプレートライブラリ(STL)のチュートリアル Jul 02, 2025 am 01:26 AM

STL(標(biāo)準(zhǔn)テンプレートライブラリ)は、コンテナ、イテレーター、アルゴリズムの3つのコアコンポーネントを含む、C標(biāo)準(zhǔn)ライブラリの重要な部分です。 1。ベクトル、マップ、セットなどのコンテナは、データを保存するために使用されます。 2。ITERATORは、コンテナ要素にアクセスするために使用されます。 3。ソートや検索などのアルゴリズムは、データの操作に使用されます。コンテナを選択する場(chǎng)合、ベクトルは動(dòng)的配列に適しており、リストは頻繁な挿入と削除に適しており、Dequeは二重端のクイック操作をサポートし、MAP/UNORDERED_MAPはキー値のペア検索に使用され、SET/UNORDERED_SETは複製に使用されます。アルゴリズムを使用する場(chǎng)合、ヘッダーファイルを含める必要があり、イテレーターとラムダ式を組み合わせる必要があります。障害の反復(fù)因子を避け、削除するときに反復(fù)器を更新し、mを変更しないように注意してください

Cの入力/出力にCINとCOUTを使用する方法は? Cの入力/出力にCINとCOUTを使用する方法は? Jul 02, 2025 am 01:10 AM

Cでは、CINとCOUTがコンソール入力と出力に使用されます。 1.コートを使用してインプットを読み取り、タイプの一致する問題に注意を払い、スペースに遭遇するのを止めます。 3。スペースを含む文字列を読むときにgetline(cin、str)を使用します。 4. CINとGetLineを使用する場(chǎng)合、殘りの文字をバッファーで掃除する必要があります。 5.誤って入力するときは、例外ステータスを処理するには、cin.clear()およびcin.ignore()に電話する必要があります。これらの重要なポイントをマスターし、安定したコンソールプログラムを書きます。

C OpenGLを使用したグラフィックプログラミングのチュートリアル C OpenGLを使用したグラフィックプログラミングのチュートリアル Jul 02, 2025 am 12:07 AM

Cプログラマー向けの初心者のグラフィカルプログラミングとして、OpenGLは良い選択です。まず、開発環(huán)境を構(gòu)築し、GLFWまたはSDLを使用してウィンドウを作成し、glewまたはgladで関數(shù)ポインターをロードし、3.3などのコンテキストバージョンを正しく設(shè)定する必要があります。第二に、OpenGLの狀態(tài)マシンモデルを理解し、コア図面プロセスをマスターします。シェーダーを作成およびコンパイルし、プログラムをリンクし、頂點(diǎn)データ(VBO)をアップロードし、屬性ポインター(VAO)を構(gòu)成し、描畫関數(shù)を呼び出します。さらに、デバッグテクニックに精通し、シェーダーコンパイルとプログラムリンクのステータスを確認(rèn)し、頂點(diǎn)屬性配列を有効にし、畫面のクリア色を設(shè)定します。上記をマスターします

競(jìng)爭力のあるプログラミングのためのCチュートリアル 競(jìng)爭力のあるプログラミングのためのCチュートリアル Jul 02, 2025 am 12:54 AM

Cを?qū)Wぶゲームをプレイするときは、次のポイントから開始する必要があります。1?;镜膜饰姆à司à筏皮い蓼工?、深く入る必要はありません??蓧涠x、ループ、條件判斷、関數(shù)などの基本的な內(nèi)容をマスターする必要はありません。 2。ベクトル、マップ、セット、キュー、スタックなどのSTLコンテナの使用の習(xí)得に焦點(diǎn)を當(dāng)てます。 3.同期ストリームの閉鎖やSCANFおよびPRINTFの使用など、高速入力および出力技術(shù)を?qū)W習(xí)します。 4.テンプレートとマクロを使用して、コードの書き込みを簡素化し、効率を向上させます。 5。境界條件や初期化エラーなどの一般的な詳細(xì)に精通しています。

c c Jul 15, 2025 am 01:30 AM

STD :: Chronoは、現(xiàn)在の時(shí)間の取得、実行時(shí)間の測(cè)定、操作時(shí)點(diǎn)と期間の測(cè)定、分析時(shí)間のフォーマットなど、時(shí)間の処理にCで使用されます。 1。STD:: Chrono :: System_Clock :: now()を使用して、現(xiàn)在の時(shí)間を取得します。 2。STD:: CHRONO :: STEADY_CLOCKを使用して実行時(shí)間を測(cè)定して単調(diào)さを確保し、DurateR_CASTを通じてミリ秒、秒、その他のユニットに変換します。 3。時(shí)點(diǎn)(Time_Point)と期間(期間)は相互運(yùn)用可能ですが、ユニットの互換性と時(shí)計(jì)エポック(エポック)に注意を払う必要があります

Cの標(biāo)準(zhǔn)テンプレートライブラリ(STL)は何ですか? Cの標(biāo)準(zhǔn)テンプレートライブラリ(STL)は何ですか? Jul 01, 2025 am 01:17 AM

C STLは、コンテナ、アルゴリズム、イテレーターなどのコアコンポーネントを含む、一般的なテンプレートクラスと機(jī)能のセットです。ベクトル、リスト、マップ、セットなどのコンテナは、データを保存するために使用されます。 Vectorは、頻繁に読むのに適したランダムアクセスをサポートします。リストの挿入と削除は効率的ですが、ゆっくりとアクセスします。マップとセットは赤と黒の木に基づいており、自動(dòng)ソートは高速検索に適しています。ソート、検索、コピー、変換、蓄積などのアルゴリズムは、それらをカプセル化するために一般的に使用され、コンテナのイテレーター範(fàn)囲に作用します。イテレーターは、容器をアルゴリズムに接続するブリッジとして機(jī)能し、トラバーサルとアクセス要素をサポートします。その他のコンポーネントには、機(jī)能オブジェクト、アダプター、アロケーターが含まれます。これらは、ロジック、変更動(dòng)作、およびメモリ管理のカスタマイズに使用されます。 STLはc

Cの揮発性キーワードは何ですか? Cの揮発性キーワードは何ですか? Jul 04, 2025 am 01:09 AM

Volatileは、変數(shù)の値がいつでも変更される可能性があることをコンパイラに伝え、コンパイラがアクセスを最適化するのを防ぎます。 1。スレッド間のハードウェアレジスタ、信號(hào)ハンドラー、または共有変數(shù)に使用されます(ただし、最新のCはSTD :: Atomicを推奨します)。 2。各アクセスは、レジスタにキャッシュされる代わりに、メモリを直接読み取りおよび書き込みます。 3.原子性やスレッドの安全性を提供せず、コンパイラが読み取りと書き込みを最適化しないことのみを保証します。 4.絶えず、2つは読み取り専用であるが外部的に変更可能な変數(shù)を表すために組み合わせて使用??されることがあります。 5.ミューテックスや原子操作を置き換えることはできず、過剰な使用はパフォーマンスに影響します。

See all articles