亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

目次
101 冊(cè)
私たちの作品
私たちは中程度です
ホームページ バックエンド開(kāi)発 Python チュートリアル 高性能の非同期 Web 開(kāi)発のための優(yōu)れた Python ライブラリ

高性能の非同期 Web 開(kāi)発のための優(yōu)れた Python ライブラリ

Jan 21, 2025 am 12:16 AM

owerful Python Libraries for High-Performance Async Web Development

多作な作家として、アマゾンで私の本を探索することをお?jiǎng)幛幛筏蓼埂? 継続的なサポートのために、Medium で私をフォローしてください。ありがとう!あなたのサポートは非??常に貴重です!

Python の非同期機(jī)能は Web 開(kāi)発に革命をもたらしました。 私は、この可能性を最大限に活用するいくつかの強(qiáng)力なライブラリを使用する機(jī)會(huì)がありました。 非同期 Web 開(kāi)発に大きな影響を與えた 6 つの主要なライブラリを詳しく見(jiàn)てみましょう。

FastAPI は、すぐに高パフォーマンス API 作成のための私のお?dú)荬巳毪辘违榨飑`ムワークになりました。その速度、使いやすさ、自動(dòng) API ドキュメントは優(yōu)れています。 FastAPI による Python の型ヒントの使用により、コードの可読性が向上し、リクエストの自動(dòng)検証とシリアル化が可能になります。

これは簡(jiǎn)単な FastAPI アプリケーションの例です:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

このコードは、2 つのエンドポイントを持つ基本的な API を確立します。 item_id パラメーターの型ヒントにより、その整數(shù)データ型が自動(dòng)的に検証されます。

クライアント側(cè)とサーバー側(cè)の両方の非同期 HTTP 操作において、aiohttp は一貫して信頼できることが証明されています。 その多用途性は、同時(shí) API リクエストから完全な Web サーバーの構(gòu)築にまで及びます。

複數(shù)の同時(shí)リクエストのクライアントとして aiohttp を使用する方法は次のとおりです:

import aiohttp
import asyncio

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        responses = await asyncio.gather(*tasks)
        for url, response in zip(urls, responses):
            print(f"{url}: {len(response)} bytes")

asyncio.run(main())

このスクリプトは複數(shù)の URL からコンテンツを同時(shí)に取得し、非同期操作の効率性を示します。

Sanic は、Flask のようなシンプルさと非同期パフォーマンスの組み合わせに感銘を受けました。 これは、非同期プログラミングの可能性を最大限に活用しながら、Flask に精通した開(kāi)発者向けに設(shè)計(jì)されています。

基本的な Sanic アプリケーション:

from sanic import Sanic
from sanic.response import json

app = Sanic("MyApp")

@app.route("/")
async def test(request):
    return json({"hello": "world"})

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=8000)

これにより、シンプルな JSON API エンドポイントが確立され、Sanic の明確な構(gòu)文が強(qiáng)調(diào)表示されます。

Tornado は、スケーラブルでノンブロッキングな Web アプリケーションを作成するための信頼できる選択肢です。統(tǒng)合されたネットワーク ライブラリは、ロングポーリングと WebSocket に特に役立ちます。

Tornado WebSocket ハンドラーの例を次に示します:

import tornado.ioloop
import tornado.web
import tornado.websocket

class EchoWebSocket(tornado.websocket.WebSocketHandler):
    def open(self):
        print("WebSocket opened")

    def on_message(self, message):
        self.write_message(u"You said: " + message)

    def on_close(self):
        print("WebSocket closed")

if __name__ == "__main__":
    application = tornado.web.Application([
        (r"/websocket", EchoWebSocket),
    ])
    application.listen(8888)
    tornado.ioloop.IOLoop.current().start()

このコードは、受信したメッセージをミラーリングする WebSocket サーバーをセットアップします。

Quart は、完全な書(shū)き換えを行わずに Flask アプリケーションを非同期操作に移行する必要があるプロジェクトにとって変革をもたらしました。その API は Flask の API を厳密に反映しており、スムーズな移行を保証します。

シンプルな Quart アプリケーション:

from quart import Quart, websocket

app = Quart(__name__)

@app.route('/')
async def hello():
    return 'Hello, World!'

@app.websocket('/ws')
async def ws():
    while True:
        data = await websocket.receive()
        await websocket.send(f"echo {data}")

if __name__ == '__main__':
    app.run()

これは標(biāo)準(zhǔn)ルートと WebSocket ルートの両方を示しており、Quart の多用途性を示しています。

Starlette は、軽量 ASGI フレームワークの私の好みの基盤(pán)として機(jī)能します。 FastAPI の基盤(pán)として、高パフォーマンスの非同期 Web サービスの構(gòu)築に優(yōu)れています。

基本的な Starlette アプリケーション:

from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def homepage(request):
    return JSONResponse({'hello': 'world'})

app = Starlette(debug=True, routes=[
    Route('/', homepage),
])

これにより、Starlette のミニマリスト デザインが強(qiáng)調(diào)される、シンプルな JSON API が設(shè)定されます。

これらの非同期ライブラリを使用することで、アプリケーションのパフォーマンスと信頼性を向上させるためのいくつかのベスト プラクティスを?qū)Wびました。

長(zhǎng)時(shí)間実行されるタスクの場(chǎng)合、メイン イベント ループのブロックを防ぐために、バックグラウンド タスクまたはジョブ キューが不可欠です。 FastAPI の BackgroundTasks を使用した例を次に示します:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

これにより、ログの書(shū)き込みが非同期的にスケジュールされ、即時(shí)の API 応答が可能になります。

データベース操作には、非同期データベース ドライバーが不可欠です。 asyncpg (PostgreSQL) や motor (MongoDB) などのライブラリは非常に貴重です。

外部 API と対話(huà)する場(chǎng)合、適切なエラー処理と再試行を備えた非同期 HTTP クライアントが不可欠です。

パフォーマンスに関しては、FastAPI と Sanic は一般に、単純な API に対して優(yōu)れた生のパフォーマンスを提供します。 ただし、フレームワークの選択は、多くの場(chǎng)合、プロジェクトのニーズとチームの精通度に依存します。

FastAPI は、自動(dòng) API ドキュメントとリクエスト検証で優(yōu)れています。 Aiohttp は、HTTP クライアント/サーバーの動(dòng)作をより詳細(xì)に制御します。 Sanic は、非同期機(jī)能を備えた Flask のようなシンプルさを提供します。 Tornado の統(tǒng)合ネットワーキング ライブラリは、WebSocket とロングポーリングに最適です。 Quart は、Flask アプリケーションの非同期操作への移行を容易にします。 Starlette は、カスタム フレームワークや軽量の ASGI サーバーの構(gòu)築に最適です。

要約すると、これら 6 つのライブラリにより、Python で効率的で高性能な非同期 Web アプリケーションを構(gòu)築する能力が大幅に向上しました。 それぞれに獨(dú)自の強(qiáng)みがあり、最適な選択はプロジェクトの特定の要件によって異なります。 これらのツールを利用し、非同期のベスト プラクティスに従うことにより、同時(shí)実行性、応答性、スケーラブル性の高い Web アプリケーションを作成しました。


101 冊(cè)

101 Books は、著者 Aarav Joshi が共同設(shè)立した AI を活用した出版社です。 當(dāng)社の高度な AI テクノロジーは出版コストを非常に低く抑えており、一部の書(shū)籍の価格は $4 という低価格であり、質(zhì)の高い知識(shí)をすべての人が利用できるようにしています。

Amazon で私たちの本 Golang Clean Code をご覧ください。

最新ニュースを入手してください。本を検索するときは、Aarav Joshi を検索すると、さらに多くのタイトルが見(jiàn)つかります。 特別割引については、提供されたリンクを使用してください!

私たちの作品

私たちの作品をご覧ください:

インベスターセントラル | 投資家中央スペイン人 | 中央ドイツの投資家 | スマートな暮らし | エポックとエコー | 不可解な謎 | ヒンドゥーヴァ | エリート開(kāi)発者 | JS スクール


私たちは中程度です

Tech Koala Insights | エポックズ&エコーズワールド | インベスター?セントラル?メディア | 不可解な謎 中 | 科學(xué)とエポックミディアム | 現(xiàn)代ヒンドゥーヴァ

以上が高性能の非同期 Web 開(kāi)発のための優(yōu)れた Python ライブラリの詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國(guó)語(yǔ) Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見(jiàn)つけた場(chǎng)合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫(huà)像を無(wú)料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫(xiě)真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫(xiě)真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類(lèi)リムーバー

Video Face Swap

Video Face Swap

完全無(wú)料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡(jiǎn)単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無(wú)料のコードエディター

SublimeText3 中國(guó)語(yǔ)版

SublimeText3 中國(guó)語(yǔ)版

中國(guó)語(yǔ)版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開(kāi)発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開(kāi)発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書(shū)き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡(jiǎn)素化し、スケーラビリティを向上させる、ゲーム開(kāi)発における異なる文字の共通の動(dòng)作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書(shū)きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Python関數(shù)引數(shù)とパラメーター Python関數(shù)引數(shù)とパラメーター Jul 04, 2025 am 03:26 AM

パラメーターは関數(shù)を定義するときはプレースホルダーであり、引數(shù)は呼び出し時(shí)に特定の値が渡されます。 1。位置パラメーターを順?lè)硕嗓贡匾ⅳ?、順序が正しくない?chǎng)合は結(jié)果のエラーにつながります。 2。キーワードパラメーターはパラメーター名で指定されており、順序を変更して読みやすさを向上させることができます。 3.デフォルトのパラメーター値は、複製コードを避けるために定義されたときに割り當(dāng)てられますが、変數(shù)オブジェクトはデフォルト値として避ける必要があります。 4. Argsおよび *Kwargsは、不確実な數(shù)のパラメーターを処理でき、一般的なインターフェイスまたはデコレータに適していますが、読みやすさを維持するためには注意して使用する必要があります。

Pythonジェネレーターと反復(fù)器を説明します。 Pythonジェネレーターと反復(fù)器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを?qū)g裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動(dòng)的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數(shù)定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無(wú)限シーケンスをサポートします。 3。既存のセットを処理するときに反復(fù)器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評(píng)価を動(dòng)的に生成するときにジェネレーターを使用します。注:リストなどの反復(fù)オブジェクトは反復(fù)因子ではありません。イテレーターがその端に達(dá)した後、それらは再作成する必要があり、発電機(jī)はそれを一度しか通過(guò)できません。

python `@classmethod`デコレーターが説明しました python `@classmethod`デコレーターが説明しました Jul 04, 2025 am 03:26 AM

クラスメソッドは、@ClassMethodデコレーターを介してPythonで定義されるメソッドです。最初のパラメーターはクラス自體(CLS)で、クラス?fàn)顟B(tài)へのアクセスまたは変更に使用されます。特定のインスタンスではなく、クラス全體に影響を與えるクラスまたはインスタンスを通じて呼び出すことができます。たとえば、Personクラスでは、show_count()メソッドは作成されたオブジェクトの數(shù)を數(shù)えます。クラスメソッドを定義するときは、@ClassMethodデコレータを使用して、Change_Var(new_Value)メソッドなどの最初のパラメーターCLSに名前を付けてクラス変數(shù)を変更する必要があります。クラス方法は、インスタンスメソッド(自己パラメーター)および靜的メソッド(自動(dòng)パラメーターなし)とは異なり、工場(chǎng)の方法、代替コンストラクター、およびクラス変數(shù)の管理に適しています。一般的な用途には以下が含まれます。

PythonでAPI認(rèn)証を処理する方法 PythonでAPI認(rèn)証を処理する方法 Jul 13, 2025 am 02:22 AM

API認(rèn)証を扱うための鍵は、認(rèn)証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認(rèn)証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動(dòng)的に更新できます。要するに、文書(shū)に従って適切な方法を選択し、重要な情報(bào)を安全に保存することが重要です。

Python Magic MethodsまたはDunder Methodとは何ですか? Python Magic MethodsまたはDunder Methodとは何ですか? Jul 04, 2025 am 03:20 AM

PythonのMagicMethods(またはDunder Methods)は、オブジェクトの動(dòng)作を定義するために使用される特別な方法であり、二重のアンダースコアで始まり、終了します。 1.オブジェクトは、追加、比較、文字列表現(xiàn)などの組み込み操作に応答できるようにします。 2.一般的なユースケースには、オブジェクトの初期化と表現(xiàn)(__init__、__Repr__、__str__)、算術(shù)操作(__ add__、__sub__、__mul__)、および比較操作(__eq__、___lt__)が含まれます。 3。それを使用するときは、彼らの行動(dòng)が期待を満たしていることを確認(rèn)してください。たとえば、__Repr__はリファクタリング可能なオブジェクトの式を返す必要があり、算術(shù)メソッドは新しいインスタンスを返す必要があります。 4.過(guò)剰使用または混亂を招くことは避ける必要があります。

Pythonメモリ管理はどのように機(jī)能しますか? Pythonメモリ管理はどのように機(jī)能しますか? Jul 04, 2025 am 03:26 AM

PythonManagesMemoryAutomatelyUsingTuntingAndagarBageCollector.ReferencountingTrackShowManyvariablesRefertoAnobject、およびThemeMoryisfreed.

PythonのPython Garbage Collectionを説明してください。 PythonのPython Garbage Collectionを説明してください。 Jul 03, 2025 am 02:07 AM

Pythonのごみ収集メカニズムは、參照カウントと定期的なごみ収集を通じてメモリを自動(dòng)的に管理します。そのコアメソッドは參照カウントであり、オブジェクトの參照の數(shù)がゼロになるとすぐにメモリを解放します。ただし、円形の參照を処理できないため、ループを検出してクリーニングするために、Garbage Collection Module(GC)が導(dǎo)入されています。通常、ガベージコレクションは、プログラムの操作中に參照カウントが減少したときにトリガーされます。割り當(dāng)てとリリースの差がしきい値を超える、またはgc.collect()が手動(dòng)で呼ばれるときにトリガーされます。ユーザーは、gc.disable()を介して自動(dòng)リサイクルをオフにし、gc.collect()を手動(dòng)で実行し、gc.set_threshold()を介して制御を?qū)g現(xiàn)するためにしきい値を調(diào)整できます。すべてのオブジェクトがループリサイクルに參加するわけではありません。參照が含まれていないオブジェクトが參照カウントによって処理されている場(chǎng)合、それは組み込まれています

See all articles