亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

目次
101 冊
私たちの作品
私たちは中程度です
ホームページ バックエンド開発 Python チュートリアル 効率的なデータ収集のための高度な Python Web クローリング技術(shù)

効率的なデータ収集のための高度な Python Web クローリング技術(shù)

Jan 14, 2025 pm 08:19 PM

dvanced Python Web Crawling Techniques for Efficient Data Collection

多作な作家として、私の Amazon 出版物をぜひご覧ください。 継続的なサポートのために、私の Medium プロフィールを忘れずにフォローしてください。あなたのエンゲージメントは非常に貴重です!

ウェブからの効率的なデータ抽出は非常に重要です。 Python の堅牢な機(jī)能は、スケーラブルで効果的な Web クローラーの作成に最適です。この記事では、Web スクレイピング プロジェクトを大幅に強(qiáng)化する 5 つの高度なテクニックについて詳しく説明します。

1. asyncio と aio による非同期クロールhttp:

非同期プログラミングにより、Web クローリングが劇的に高速化されます。 Python の asyncio ライブラリを aiohttp と組み合わせると、HTTP リクエストの同時実行が可能になり、データ収集速度が向上します。

簡略化した非同期クロールの例を次に示します:

import asyncio
import aiohttp
from bs4 import BeautifulSoup

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def parse(html):
    soup = BeautifulSoup(html, 'lxml')
    # Data extraction and processing
    return data

async def crawl(urls):
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        pages = await asyncio.gather(*tasks)
        results = [await parse(page) for page in pages]
    return results

urls = ['http://example.com', 'http://example.org', 'http://example.net']
results = asyncio.run(crawl(urls))

asyncio.gather() では、複數(shù)のコルーチンを同時に実行できるため、全體的なクロール時間が大幅に短縮されます。

2. Scrapy と ScrapyRT による分散クロール:

大規(guī)模なクローリングの場合、分散アプローチは非常に有利です。 強(qiáng)力な Web スクレイピング フレームワークである Scrapy を ScrapyRT と組み合わせることで、リアルタイムの分散 Web クローリングが容易になります。

基本的な Scrapy スパイダーの例:

import scrapy

class ExampleSpider(scrapy.Spider):
    name = 'example'
    start_urls = ['http://example.com']

    def parse(self, response):
        for item in response.css('div.item'):
            yield {
                'title': item.css('h2::text').get(),
                'link': item.css('a::attr(href)').get(),
                'description': item.css('p::text').get()
            }

        next_page = response.css('a.next-page::attr(href)').get()
        if next_page:
            yield response.follow(next_page, self.parse)

ScrapyRT の統(tǒng)合には、ScrapyRT サーバーのセットアップと HTTP リクエストの送信が含まれます。

import requests

url = 'http://localhost:9080/crawl.json'
params = {
    'spider_name': 'example',
    'url': 'http://example.com'
}
response = requests.get(url, params=params)
data = response.json()

これにより、オンデマンドのクロールと他のシステムとのシームレスな統(tǒng)合が可能になります。

3. Selenium を使用した JavaScript レンダリングされたコンテンツの処理:

多くの Web サイトでは、動的なコンテンツのレンダリングに JavaScript が使用されています。 Selenium WebDriver はブラウザを効果的に自動化し、JavaScript 要素と対話します。

Selenium の使用例:

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Chrome()
driver.get("http://example.com")

# Wait for element to load
element = WebDriverWait(driver, 10).until(
    EC.presence_of_element_located((By.ID, "dynamic-content"))
)

# Extract data
data = element.text

driver.quit()

Selenium は、ユーザー操作が複雑な単一ページのアプリケーションや Web サイトをクロールする場合に不可欠です。

4.プロキシと IP ローテーションの利用:

プロキシのローテーションは、レート制限と IP 禁止を回避するために不可欠です。これには、リクエストごとに異なる IP アドレスを循環(huán)することが含まれます。

プロキシの使用例:

import requests
from itertools import cycle

proxies = [
    {'http': 'http://proxy1.com:8080'},
    {'http': 'http://proxy2.com:8080'},
    {'http': 'http://proxy3.com:8080'}
]
proxy_pool = cycle(proxies)

for url in urls:
    proxy = next(proxy_pool)
    try:
        response = requests.get(url, proxies=proxy)
        # Process response
    except:
        # Error handling and proxy removal
        pass

これにより負(fù)荷が分散され、ブロックされるリスクが軽減されます。

5. lxml および CSS セレクターを使用した効率的な HTML 解析:

lxml と CSS セレクターは、高パフォーマンスの HTML 解析を提供します。

例:

from lxml import html
import requests

response = requests.get('http://example.com')
tree = html.fromstring(response.content)

# Extract data using CSS selectors
titles = tree.cssselect('h2.title')
links = tree.cssselect('a.link')

for title, link in zip(titles, links):
    print(title.text_content(), link.get('href'))

これは、特に大きな HTML ドキュメントの場合、BeautifulSoup よりも大幅に高速です。

ベストプラクティスとスケーラビリティ:

  • robots.txt を尊重します: ウェブサイトのルールを遵守します。
  • 丁寧なクロール: リクエスト間の遅延を?qū)g裝します。
  • 適切なユーザー エージェントを使用します: クローラーを識別します。
  • 堅牢なエラー処理: 再試行メカニズムが含まれます。
  • 効率的なデータストレージ: 適切なデータベースまたはファイル形式を利用します。
  • メッセージ キュー (Celery など): 複數(shù)のマシンにわたるクロール ジョブを管理します。
  • クロール フロンティア: URL を効率的に管理します。
  • パフォーマンス監(jiān)視: クローラーのパフォーマンスを追跡します。
  • 水平スケーリング: 必要に応じてクローリング ノードを追加します。

倫理的なウェブスクレイピングは最も重要です。 これらのテクニックを適応させ、特定のニーズを満たすために他のライブラリを探索してください。 Python の広範(fàn)なライブラリにより、最も要求の厳しい Web クローリング タスクでも処理できるようになります。


101 冊

著者

Aarav Joshi が共同設(shè)立した 101 Books は、AI を活用した出版社です。 出版コストが低く、一部の書籍はわずか $4 なので、質(zhì)の高い知識をすべての人が利用できるようになります。

Amazon で私たちの本 Golang Clean Code を見つけてください。

最新情報や特別割引については、Amazon で Aarav Joshi を検索してください。

私たちの作品

私たちの作品をご覧ください:

インベスターセントラル | 投資家中央スペイン人 | 中央ドイツの投資家 | スマートな暮らし | エポックとエコー | 不可解な謎 | ヒンドゥーヴァ | エリート開発者 | JS スクール


私たちは中程度です

Tech Koala Insights | エポックズ&エコーズワールド | インベスター?セントラル?メディア | 不可解な謎 中 | 科學(xué)とエポックミディアム | 現(xiàn)代ヒンドゥーヴァ

以上が効率的なデータ収集のための高度な Python Web クローリング技術(shù)の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Python関數(shù)引數(shù)とパラメーター Python関數(shù)引數(shù)とパラメーター Jul 04, 2025 am 03:26 AM

パラメーターは関數(shù)を定義するときはプレースホルダーであり、引數(shù)は呼び出し時に特定の値が渡されます。 1。位置パラメーターを順番に渡す必要があり、順序が正しくない場合は結(jié)果のエラーにつながります。 2。キーワードパラメーターはパラメーター名で指定されており、順序を変更して読みやすさを向上させることができます。 3.デフォルトのパラメーター値は、複製コードを避けるために定義されたときに割り當(dāng)てられますが、変數(shù)オブジェクトはデフォルト値として避ける必要があります。 4. Argsおよび *Kwargsは、不確実な數(shù)のパラメーターを処理でき、一般的なインターフェイスまたはデコレータに適していますが、読みやすさを維持するためには注意して使用する必要があります。

Pythonジェネレーターと反復(fù)器を説明します。 Pythonジェネレーターと反復(fù)器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを?qū)g裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數(shù)定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無限シーケンスをサポートします。 3。既存のセットを処理するときに反復(fù)器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評価を動的に生成するときにジェネレーターを使用します。注:リストなどの反復(fù)オブジェクトは反復(fù)因子ではありません。イテレーターがその端に達(dá)した後、それらは再作成する必要があり、発電機(jī)はそれを一度しか通過できません。

python `@classmethod`デコレーターが説明しました python `@classmethod`デコレーターが説明しました Jul 04, 2025 am 03:26 AM

クラスメソッドは、@ClassMethodデコレーターを介してPythonで定義されるメソッドです。最初のパラメーターはクラス自體(CLS)で、クラス?fàn)顟B(tài)へのアクセスまたは変更に使用されます。特定のインスタンスではなく、クラス全體に影響を與えるクラスまたはインスタンスを通じて呼び出すことができます。たとえば、Personクラスでは、show_count()メソッドは作成されたオブジェクトの數(shù)を數(shù)えます。クラスメソッドを定義するときは、@ClassMethodデコレータを使用して、Change_Var(new_Value)メソッドなどの最初のパラメーターCLSに名前を付けてクラス変數(shù)を変更する必要があります。クラス方法は、インスタンスメソッド(自己パラメーター)および靜的メソッド(自動パラメーターなし)とは異なり、工場の方法、代替コンストラクター、およびクラス変數(shù)の管理に適しています。一般的な用途には以下が含まれます。

PythonでAPI認(rèn)証を処理する方法 PythonでAPI認(rèn)証を処理する方法 Jul 13, 2025 am 02:22 AM

API認(rèn)証を扱うための鍵は、認(rèn)証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認(rèn)証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Python Magic MethodsまたはDunder Methodとは何ですか? Python Magic MethodsまたはDunder Methodとは何ですか? Jul 04, 2025 am 03:20 AM

PythonのMagicMethods(またはDunder Methods)は、オブジェクトの動作を定義するために使用される特別な方法であり、二重のアンダースコアで始まり、終了します。 1.オブジェクトは、追加、比較、文字列表現(xiàn)などの組み込み操作に応答できるようにします。 2.一般的なユースケースには、オブジェクトの初期化と表現(xiàn)(__init__、__Repr__、__str__)、算術(shù)操作(__ add__、__sub__、__mul__)、および比較操作(__eq__、___lt__)が含まれます。 3。それを使用するときは、彼らの行動が期待を満たしていることを確認(rèn)してください。たとえば、__Repr__はリファクタリング可能なオブジェクトの式を返す必要があり、算術(shù)メソッドは新しいインスタンスを返す必要があります。 4.過剰使用または混亂を招くことは避ける必要があります。

Pythonメモリ管理はどのように機(jī)能しますか? Pythonメモリ管理はどのように機(jī)能しますか? Jul 04, 2025 am 03:26 AM

PythonManagesMemoryAutomatelyUsingTuntingAndagarBageCollector.ReferencountingTrackShowManyvariablesRefertoAnobject、およびThemeMoryisfreed.

PythonのPython Garbage Collectionを説明してください。 PythonのPython Garbage Collectionを説明してください。 Jul 03, 2025 am 02:07 AM

Pythonのごみ収集メカニズムは、參照カウントと定期的なごみ収集を通じてメモリを自動的に管理します。そのコアメソッドは參照カウントであり、オブジェクトの參照の數(shù)がゼロになるとすぐにメモリを解放します。ただし、円形の參照を処理できないため、ループを検出してクリーニングするために、Garbage Collection Module(GC)が導(dǎo)入されています。通常、ガベージコレクションは、プログラムの操作中に參照カウントが減少したときにトリガーされます。割り當(dāng)てとリリースの差がしきい値を超える、またはgc.collect()が手動で呼ばれるときにトリガーされます。ユーザーは、gc.disable()を介して自動リサイクルをオフにし、gc.collect()を手動で実行し、gc.set_threshold()を介して制御を?qū)g現(xiàn)するためにしきい値を調(diào)整できます。すべてのオブジェクトがループリサイクルに參加するわけではありません。參照が含まれていないオブジェクトが參照カウントによって処理されている場合、それは組み込まれています

See all articles