亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

ホームページ バックエンド開発 Python チュートリアル Webスクレイピングと外國語データの分析

Webスクレイピングと外國語データの分析

Dec 24, 2024 am 11:40 AM

最近、簡単な Web スクレイピングとデータ分析プロジェクトを?qū)g行したいと決心しました。私の脳は、時間がかかりそうな大きなアイデアを思いつくのが好きなので、數(shù)時間で実行できそうな簡単なものを思いつくことに挑戦することにしました。

私が思いついたのは次のとおりです:

私の學(xué)位はもともと外國語 (フランス語とスペイン語) だったので、言語関連のデータを Web スクレイピングするのは楽しいだろうと思いました。 BeautifulSoup ライブラリを使用したかったのですが、このライブラリは靜的 HTML を解析できますが、データセット全體を表示するために onclick イベントを必要とする(つまり、ページ分割されている場合はデータの次のページをクリックするなど)動的 Web ページを処理できません。

私は、最も一般的に話されている言語をまとめたこの Wikipedia ページを使用することにしました。

Web scraping and analysing foreign languages data

次のことをしたかったのです:

  • ページの HTML を取得し、.txt ファイルに出力します
  • 美しいスープを使用して HTML ファイルを解析し、テーブル データを抽出します
  • テーブルを .csv ファイルに書き込みます
  • データ分析を使用して、このデータセットについて答えたい 10 の質(zhì)問を考えてください
  • パンダと Jupyter Notebook を使用してこれらの質(zhì)問に答えます

関心を分離するためにプロジェクトをこれらのステップに分割することにしましたが、スクリプトを再実行して Wikipedia から HTML を取得するために複數(shù)の不必要なリクエストを行うことも避けたかったのです。 HTML ファイルを保存して、別のスクリプトでそれを操作すると、データはすでにあるため、データを再リクエストする必要がなくなります。

プロジェクトリンク

このプロジェクトの github リポジトリへのリンクは次のとおりです: https://github.com/gabrielrowan/Foreign-Languages-Analysis

HTMLの取得

まず、htmlを取得して出力しました。 C# と C を使った後は、Python コードがいかに短くて簡潔であるかにいつも驚かされます。

url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers'

response = requests.get(url)
html = response.text

with open("languages_html.txt", "w", encoding="utf-8") as file:
    file.write(html)

HTMLを解析する

美しいスープで HTML を解析し、興味のあるテーブルを選択するには、次のようにしました。

with open("languages_html.txt", "r", encoding="utf-8") as file:
    soup = BeautifulSoup(file, 'html.parser')

# get table
top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')


次に、パンダ データフレームの列名を取得するためのテーブル ヘッダー テキストを取得しました。

# get column names
columns = top_languages_table.find_all("th")
column_titles = [column.text.strip() for column in columns]

その後、データフレームを作成し、列名を設(shè)定し、テーブルの各行を取得して、各行をデータフレームに書き込みました。

# get table rows
table_data = top_languages_table.find_all("tr")

# define dataframe
df = pd.DataFrame(columns=column_titles)

# get table data
for row in table_data[1:]:
    row_data = row.find_all('td')
    row_data_txt = [row.text.strip() for row in row_data]
    print(row_data_txt)
    df.loc[len(df)] = row_data_txt 


注 -strip() を使用しないと、テキスト內(nèi)に不要な n 文字が含まれていました。

最後に、データフレームを .csv に書き込みました。

データの分析

事前に、データから答えたい次の質(zhì)問を考え出します。

  1. データセット內(nèi)のすべての言語のネイティブ スピーカーの総數(shù)は何人ですか?
  2. 言語家族には何種類ありますか?
  3. 言語族ごとのネイティブ スピーカーの総數(shù)は何人ですか?
  4. 最も一般的な言語ファミリーのトップ 3 は何ですか?
  5. 最も一般的な言語ファミリーの上位 3 つを示す円グラフを作成します
  6. 最も一般的に発生する言語ファミリー - ブランチ ペアは何ですか?
  7. この表にはどの言語が中國?チベット語として含まれていますか?
  8. すべてのロマンス語とゲルマン語の母語話者の棒グラフを表示します
  9. 上位 5 つの言語はネイティブ スピーカー全體の何パーセントを占めていますか?
  10. ネイティブ スピーカーが最も多い支店と最も少ない支店はどれですか?

結(jié)果

これらの質(zhì)問すべてに答えるためにコードを詳しく説明するつもりはありませんが、チャートに関係する 2 つの質(zhì)問について説明します。

すべてのロマンス語とゲルマン語のネイティブ スピーカーの棒グラフを表示します

まず、ブランチ名が「Romance」または「Germanic」である行のみを含むデータフレームを作成しました

url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers'

response = requests.get(url)
html = response.text

with open("languages_html.txt", "w", encoding="utf-8") as file:
    file.write(html)

次に、グラフに必要な x 軸、y 軸、バーの色を指定しました。

with open("languages_html.txt", "r", encoding="utf-8") as file:
    soup = BeautifulSoup(file, 'html.parser')

# get table
top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')


これにより作成されました:

Web scraping and analysing foreign languages data

最も一般的な上位 3 つの言語ファミリーを示す円グラフを作成する

円グラフを作成するために、最も一般的な上位 3 つの言語ファミリーを取得し、これらをデータフレームに入れました。

このコード グループは、言語族ごとのネイティブ スピーカーの合計を取得し、降順に並べ替えて、上位 3 つのエントリを抽出します。

# get column names
columns = top_languages_table.find_all("th")
column_titles = [column.text.strip() for column in columns]

次に、「ネイティブ スピーカー」の Y 軸と凡例を指定して、データを円グラフに配置します。これにより、グラフに表示される言語ファミリーごとに色分けされたラベルが作成されます。

# get table rows
table_data = top_languages_table.find_all("tr")

# define dataframe
df = pd.DataFrame(columns=column_titles)

# get table data
for row in table_data[1:]:
    row_data = row.find_all('td')
    row_data_txt = [row.text.strip() for row in row_data]
    print(row_data_txt)
    df.loc[len(df)] = row_data_txt 


Web scraping and analysing foreign languages data

殘りの質(zhì)問のコードと回答はここにあります。ノートにマークダウンを使用して質(zhì)問とその回答を書きました。

次回:

次回の Web スクレイピングとデータ分析プロジェクトでは、以下を使用して物事をより複雑にしたいと思います。

  • クリック/スクロールすると詳細なデータが表示される 動的 ページを Web スクレイピング
  • はるかに大きなデータセットを分析します。分析前にデータ クリーニング作業(yè)が必要になる可能性があります

Web scraping and analysing foreign languages data

最終的な考え

あっという間のプロジェクトでしたが、このプロジェクトは楽しかったです。短くて管理しやすいプロジェクトが、実踐擔(dān)當(dāng)者を獲得するのにどれほど役立つかを思い出しました。さらに、たとえ小さなデータセットであっても、インターネットからデータを抽出してそこからグラフを作成するのは楽しいものですか?

以上がWebスクレイピングと外國語データの分析の詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonジェネレーターと反復(fù)器を説明します。 Pythonジェネレーターと反復(fù)器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを?qū)g裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數(shù)定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無限シーケンスをサポートします。 3。既存のセットを処理するときに反復(fù)器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評価を動的に生成するときにジェネレーターを使用します。注:リストなどの反復(fù)オブジェクトは反復(fù)因子ではありません。イテレーターがその端に達した後、それらは再作成する必要があり、発電機はそれを一度しか通過できません。

PythonでAPI認(rèn)証を処理する方法 PythonでAPI認(rèn)証を処理する方法 Jul 13, 2025 am 02:22 AM

API認(rèn)証を扱うための鍵は、認(rèn)証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認(rèn)証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Pythonの主張を説明します。 Pythonの主張を説明します。 Jul 07, 2025 am 12:14 AM

Assertは、Pythonでデバッグに使用されるアサーションツールであり、條件が満たされないときにアサーションエラーを投げます。その構(gòu)文は、アサート條件とオプションのエラー情報であり、パラメーターチェック、ステータス確認(rèn)などの內(nèi)部ロジック検証に適していますが、セキュリティまたはユーザーの入力チェックには使用できず、明確な迅速な情報と組み合わせて使用??する必要があります。例外処理を置き換えるのではなく、開発段階での補助デバッグにのみ利用できます。

一度に2つのリストを繰り返す方法Python 一度に2つのリストを繰り返す方法Python Jul 09, 2025 am 01:13 AM

Pythonで2つのリストを同時にトラバースする一般的な方法は、Zip()関數(shù)を使用することです。これは、複數(shù)のリストを順番にペアリングし、最短になります。リストの長さが一貫していない場合は、itertools.zip_longest()を使用して最長になり、欠損値を入力できます。 enumerate()と組み合わせて、同時にインデックスを取得できます。 1.Zip()は簡潔で実用的で、ペアのデータ反復(fù)に適しています。 2.zip_longest()は、一貫性のない長さを扱うときにデフォルト値を入力できます。 3. Enumerate(Zip())は、トラバーサル中にインデックスを取得し、さまざまな複雑なシナリオのニーズを満たすことができます。

Python Iteratorsとは何ですか? Python Iteratorsとは何ですか? Jul 08, 2025 am 02:56 AM

inpython、iteratoratorSareObjectsthatallopingthroughcollectionsbyimplementing __()and__next __()

Pythonタイプのヒントとは何ですか? Pythonタイプのヒントとは何ですか? Jul 07, 2025 am 02:55 AM

タイプヒントシンパソコンの問題と、ポテンシャルを使用して、dynamivitytedcodedededevelowingdeexpecifeedtypes.theyenhanceReadeadability、inableearlybugdetection、およびrequrovetoolingsusingsupport.typehintsareadddeduneadddedusingolon(:)

Python Fastapiチュートリアル Python Fastapiチュートリアル Jul 12, 2025 am 02:42 AM

Pythonを使用して最新の効率的なAPIを作成するには、Fastapiをお勧めします。標(biāo)準(zhǔn)のPythonタイプのプロンプトに基づいており、優(yōu)れたパフォーマンスでドキュメントを自動的に生成できます。 FastAPIおよびASGIサーバーUVICORNをインストールした後、インターフェイスコードを記述できます。ルートを定義し、処理機能を作成し、データを返すことにより、APIをすばやく構(gòu)築できます。 Fastapiは、さまざまなHTTPメソッドをサポートし、自動的に生成されたSwaggeruiおよびRedocドキュメントシステムを提供します。 URLパラメーターはパス定義を介してキャプチャできますが、クエリパラメーターは、関數(shù)パラメーターのデフォルト値を設(shè)定することで実裝できます。 Pydanticモデルの合理的な使用は、開発の効率と精度を改善するのに役立ちます。

See all articles